Narrow your search

Library

KU Leuven (2)

ULiège (1)


Resource type

book (2)


Language

English (2)


Year
From To Submit

2017 (1)

2016 (1)

Listing 1 - 2 of 2
Sort by

Book
Asymptotic Differential Algebra and Model Theory of Transseries
Authors: --- ---
ISBN: 1400885418 Year: 2017 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems.This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.

Keywords

Series, Arithmetic. --- Divergent series. --- Asymptotic expansions. --- Differential algebra. --- Algebra, Differential --- Differential fields --- Algebraic fields --- Differential equations --- Asymptotic developments --- Asymptotes --- Convergence --- Difference equations --- Divergent series --- Functions --- Numerical analysis --- Series, Divergent --- Series --- Arithmetic series --- Progressions, Arithmetic --- Equalizer Theorem. --- H-asymptotic couple. --- H-asymptotic field. --- H-field. --- Hahn Embedding Theorem. --- Hahn space. --- Johnson's Theorem. --- Krull's Principal Ideal Theorem. --- Kähler differentials. --- Liouville closed H-field. --- Liouville closure. --- Newton degree. --- Newton diagram. --- Newton multiplicity. --- Newton tree. --- Newton weight. --- Newton-Liouville closure. --- Riccati transform. --- Scanlon's extension. --- Zariski topology. --- algebraic differential equation. --- algebraic extension. --- angular component map. --- asymptotic couple. --- asymptotic differential algebra. --- asymptotic field. --- asymptotic relation. --- asymptotics. --- closed H-asymptotic couple. --- closure properties. --- coarsening. --- commutative algebra. --- commutative ring. --- compositional conjugation. --- constant. --- continuity. --- d-henselian. --- d-henselianity. --- decomposition. --- derivation. --- differential field extension. --- differential field. --- differential module. --- differential polynomial. --- differential-hensel. --- differential-henselian field. --- differential-henselianity. --- differential-valued extension. --- differentially closed field. --- dominant part. --- equivalence. --- eventual quantities. --- exponential integral. --- extension. --- filtered module. --- gaussian extension. --- grid-based transseries. --- henselian valued field. --- homogeneous differential polynomial. --- immediate extension. --- integral. --- integrally closed domain. --- linear differential equation. --- linear differential operator. --- linear differential polynomial. --- mathematics. --- maximal immediate extension. --- model companion. --- monotonicity. --- noetherian ring. --- ordered abelian group. --- ordered differential field. --- ordered set. --- pre-differential-valued field. --- pseudocauchy sequence. --- pseudoconvergence. --- quantifier elimination. --- rational asymptotic integration. --- regular local ring. --- residue field. --- simple differential ring. --- small derivation. --- special cut. --- specialization. --- substructure. --- transseries. --- triangular automorphism. --- triangular derivation. --- valuation topology. --- valuation. --- value group. --- valued abelian group. --- valued differential field. --- valued field. --- valued vector space.


Book
Rigid Local Systems. (AM-139), Volume 139
Author:
ISBN: 1400882591 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Riemann introduced the concept of a "local system" on P1-{a finite set of points} nearly 140 years ago. His idea was to study nth order linear differential equations by studying the rank n local systems (of local holomorphic solutions) to which they gave rise. His first application was to study the classical Gauss hypergeometric function, which he did by studying rank-two local systems on P1- {0,1,infinity}. His investigation was successful, largely because any such (irreducible) local system is rigid in the sense that it is globally determined as soon as one knows separately each of its local monodromies. It became clear that luck played a role in Riemann's success: most local systems are not rigid. Yet many classical functions are solutions of differential equations whose local systems are rigid, including both of the standard nth order generalizations of the hypergeometric function, n F n-1's, and the Pochhammer hypergeometric functions. This book is devoted to constructing all (irreducible) rigid local systems on P1-{a finite set of points} and recognizing which collections of independently given local monodromies arise as the local monodromies of irreducible rigid local systems. Although the problems addressed here go back to Riemann, and seem to be problems in complex analysis, their solutions depend essentially on a great deal of very recent arithmetic algebraic geometry, including Grothendieck's etale cohomology theory, Deligne's proof of his far-reaching generalization of the original Weil Conjectures, the theory of perverse sheaves, and Laumon's work on the l-adic Fourier Transform.

Keywords

Differential equations --- Hypergeometric functions. --- Sheaf theory. --- Numerical solutions. --- Additive group. --- Alexander Grothendieck. --- Algebraic closure. --- Algebraic differential equation. --- Algebraically closed field. --- Algorithm. --- Analytic continuation. --- Automorphism. --- Axiom of choice. --- Bernhard Riemann. --- Big O notation. --- Calculation. --- Carlos Simpson. --- Coefficient. --- Cohomology. --- Commutator. --- Compactification (mathematics). --- Comparison theorem. --- Complex analytic space. --- Complex conjugate. --- Complex manifold. --- Conjecture. --- Conjugacy class. --- Convolution. --- Corollary. --- Cube root. --- Cusp form. --- De Rham cohomology. --- Differential equation. --- Dimension. --- Dimensional analysis. --- Discrete valuation ring. --- Disjoint union. --- Divisor. --- Duality (mathematics). --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic curve. --- Equation. --- Equivalence of categories. --- Exact sequence. --- Existential quantification. --- Finite field. --- Finite set. --- Fourier transform. --- Functor. --- Fundamental group. --- Generic point. --- Ground field. --- Hodge structure. --- Hypergeometric function. --- Integer. --- Invertible matrix. --- Isomorphism class. --- Jordan normal form. --- Level of measurement. --- Linear differential equation. --- Local system. --- Mathematical induction. --- Mathematics. --- Matrix (mathematics). --- Monodromy. --- Monomial. --- Morphism. --- Natural filtration. --- Parameter. --- Parity (mathematics). --- Perfect field. --- Perverse sheaf. --- Polynomial. --- Prime number. --- Projective representation. --- Projective space. --- Pullback (category theory). --- Pullback. --- Rational function. --- Regular singular point. --- Relative dimension. --- Residue field. --- Ring of integers. --- Root of unity. --- Sequence. --- Sesquilinear form. --- Set (mathematics). --- Sheaf (mathematics). --- Six operations. --- Special case. --- Subgroup. --- Subobject. --- Subring. --- Suggestion. --- Summation. --- Tensor product. --- Theorem. --- Theory. --- Topology. --- Triangular matrix. --- Trivial representation. --- Vector space. --- Zariski topology.

Listing 1 - 2 of 2
Sort by