Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2020 (3)

Listing 1 - 6 of 6
Sort by

Book
New Challenges in Water Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

New challenges in water systems toward safety, efficiency, reliability, and system flexibility will be fundamental in the near future. In this book, readers can find different approaches that include safety analysis, system efficiency improvements, and new innovative designs. The risk function is a measure of its vulnerability level and security loss. Analyses of transient flows associated with the most dangerous operating conditions, are compulsory to grant system liability in terms of water quantity, quality, and system management. Specific equipment, such as air valves, is used in pressurized water pipes to manage the air inside, associated with the emptying and filling process. Advanced tools are developed toward near-future smart water grids. The water system efficiency and water–energy nexus, through the implementation of suitable pressure control and energy recovery devices, as well as pumped-storage hydropower, provide guidelines toward the most technical and environmental cost-effective solutions. Integrated analysis of water and energy allows more reliable, flexible, and sustainable eco-design projects, reaching better resilience systems. Hydraulic simulators and computational fluid dynamics (CFD), conjugating with field or experimental tests, supported by advanced smart equipment, allow a better design, control, and complex event anticipation occurrence to attain high levels of water system security and efficiency.


Book
Water Systems towards New Future Challenges
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises components associated with smart water which aims at the exploitation and building of more sustainable and technological water networks towards the water–energy nexus and system efficiency. The implementation of modeling frameworks for measuring the performance based on a set of relevant indicators and data applications and model interfaces provides better support for decisions towards greater sustainability and more flexible and safer solutions. The hydraulic, management, and structural models represent the most effective and viable way to predict the behavior of the water networks under a wide range of conditions of demand and system failures. The knowledge of reliable parameters is crucial to develop approach models and, therefore, positive decisions in real time to be implemented in smart water systems. On the other hand, the models of operation in real-time optimization allow us to extend decisions to smart water systems in order to improve the efficiency of the water network and ensure more reliable and flexible operations, maximizing cost, environmental, and social savings associated with losses or failures. The data obtained in real time instantly update the network model towards digital water models, showing the characteristic parameters of pumps, valves, pressures, and flows, as well as hours of operation towards the lowest operating costs, in order to meet the requirement objectives for an efficient system.


Book
New Challenges in Water Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

New challenges in water systems toward safety, efficiency, reliability, and system flexibility will be fundamental in the near future. In this book, readers can find different approaches that include safety analysis, system efficiency improvements, and new innovative designs. The risk function is a measure of its vulnerability level and security loss. Analyses of transient flows associated with the most dangerous operating conditions, are compulsory to grant system liability in terms of water quantity, quality, and system management. Specific equipment, such as air valves, is used in pressurized water pipes to manage the air inside, associated with the emptying and filling process. Advanced tools are developed toward near-future smart water grids. The water system efficiency and water–energy nexus, through the implementation of suitable pressure control and energy recovery devices, as well as pumped-storage hydropower, provide guidelines toward the most technical and environmental cost-effective solutions. Integrated analysis of water and energy allows more reliable, flexible, and sustainable eco-design projects, reaching better resilience systems. Hydraulic simulators and computational fluid dynamics (CFD), conjugating with field or experimental tests, supported by advanced smart equipment, allow a better design, control, and complex event anticipation occurrence to attain high levels of water system security and efficiency.


Book
Water Systems towards New Future Challenges
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises components associated with smart water which aims at the exploitation and building of more sustainable and technological water networks towards the water–energy nexus and system efficiency. The implementation of modeling frameworks for measuring the performance based on a set of relevant indicators and data applications and model interfaces provides better support for decisions towards greater sustainability and more flexible and safer solutions. The hydraulic, management, and structural models represent the most effective and viable way to predict the behavior of the water networks under a wide range of conditions of demand and system failures. The knowledge of reliable parameters is crucial to develop approach models and, therefore, positive decisions in real time to be implemented in smart water systems. On the other hand, the models of operation in real-time optimization allow us to extend decisions to smart water systems in order to improve the efficiency of the water network and ensure more reliable and flexible operations, maximizing cost, environmental, and social savings associated with losses or failures. The data obtained in real time instantly update the network model towards digital water models, showing the characteristic parameters of pumps, valves, pressures, and flows, as well as hours of operation towards the lowest operating costs, in order to meet the requirement objectives for an efficient system.


Book
New Challenges in Water Systems
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

New challenges in water systems toward safety, efficiency, reliability, and system flexibility will be fundamental in the near future. In this book, readers can find different approaches that include safety analysis, system efficiency improvements, and new innovative designs. The risk function is a measure of its vulnerability level and security loss. Analyses of transient flows associated with the most dangerous operating conditions, are compulsory to grant system liability in terms of water quantity, quality, and system management. Specific equipment, such as air valves, is used in pressurized water pipes to manage the air inside, associated with the emptying and filling process. Advanced tools are developed toward near-future smart water grids. The water system efficiency and water–energy nexus, through the implementation of suitable pressure control and energy recovery devices, as well as pumped-storage hydropower, provide guidelines toward the most technical and environmental cost-effective solutions. Integrated analysis of water and energy allows more reliable, flexible, and sustainable eco-design projects, reaching better resilience systems. Hydraulic simulators and computational fluid dynamics (CFD), conjugating with field or experimental tests, supported by advanced smart equipment, allow a better design, control, and complex event anticipation occurrence to attain high levels of water system security and efficiency.


Book
Water Systems towards New Future Challenges
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book comprises components associated with smart water which aims at the exploitation and building of more sustainable and technological water networks towards the water–energy nexus and system efficiency. The implementation of modeling frameworks for measuring the performance based on a set of relevant indicators and data applications and model interfaces provides better support for decisions towards greater sustainability and more flexible and safer solutions. The hydraulic, management, and structural models represent the most effective and viable way to predict the behavior of the water networks under a wide range of conditions of demand and system failures. The knowledge of reliable parameters is crucial to develop approach models and, therefore, positive decisions in real time to be implemented in smart water systems. On the other hand, the models of operation in real-time optimization allow us to extend decisions to smart water systems in order to improve the efficiency of the water network and ensure more reliable and flexible operations, maximizing cost, environmental, and social savings associated with losses or failures. The data obtained in real time instantly update the network model towards digital water models, showing the characteristic parameters of pumps, valves, pressures, and flows, as well as hours of operation towards the lowest operating costs, in order to meet the requirement objectives for an efficient system.

Listing 1 - 6 of 6
Sort by