Listing 1 - 10 of 22 | << page >> |
Sort by
|
Choose an application
Choose an application
Three-dimensional (3D) printing has evolved massively during the last years. The 3D printing technologies offer various advantages, including: i) tailor-made design, ii) rapid prototyping, and iii) manufacturing of complex structures. Importantly, 3D printing is currently finding its potential in tissue engineering, wound dressings, tissue models for drug testing, prosthesis, and biosensors, to name a few. One important factor is the optimized composition of inks that can facilitate the deposition of cells, fabrication of vascularized tissue and the structuring of complex constructs that are similar to functional organs. Biocomposite inks can include synthetic and natural polymers, such as poly (ε-caprolactone), polylactic acid, collagen, hyaluronic acid, alginate, nanocellulose, and may be complemented with cross-linkers to stabilize the constructs and with bioactive molecules to add functionality. Inks that contain living cells are referred to as bioinks and the process as 3D bioprinting. Some of the key aspects of the formulation of bioinks are, e.g., the tailoring of mechanical properties, biocompatibility and the rheological behavior of the ink which may affect the cell viability, proliferation, and cell differentiation.The current Special Issue emphasizes the bio-technological engineering of novel biocomposite inks for various 3D printing technologies, also considering important aspects in the production and use of bioinks.
Information technology industries --- bacteria biofabrication --- 3D printing --- tissue engineering --- probiotic food --- pine sawdust --- soda ethanol pulping --- nanocellulose --- cytotoxicity --- absorption --- wound dressings --- bioprinting --- cellulose --- hydrogel --- physical cross-linking --- 3D bioprinting --- biocomposite ink --- tubular tissue --- tubular organ --- bacterial nanocellulose --- cellulose nanofibrils --- cellulose nanocrystals --- bioink --- collagen --- ECM --- extracellular matrix --- bioinks --- biomanufacturing --- biocomposite --- forest-based MFC --- fibrils --- additive manufacturing --- artificial limb --- fused deposition modeling (FDM) --- biofabrication --- hydrogels --- growth factor cocktail --- bioactive scaffold --- printability --- carboxylated agarose --- free-standing --- human nasal chondrocytes --- clinical translational --- polyhydroxyalkanoates --- scaffolds --- biomedicine --- drug delivery --- vessel stenting --- cancer --- 3D cell culture --- CNF --- cancer stemness --- n/a
Choose an application
Lab-on-PCB devices can be considered an emerging technology. In fact, most of the contributions have been published during the last 5 years. It is mainly focussed on both biomedical and electronic applications. The book includes an interesting guide for using the different layers of the Printed Circuit Boards for developing new devices; guidelines for fabricating PCB-based electrochemical biosensors, and an overview of fluid manipulation devices fabricated using Printed Circuit Boards. In addition, current PCB-based devices are reported, and studies for several aspects of research and development of lab-on-PCB devices are described.
Technology: general issues --- History of engineering & technology --- lab-on-PCB --- microfluidics --- flow driving --- actuators --- biomedical applications --- MEA --- brain cells --- electrical recordings --- Organ-on-Chip --- Brain-on-Chip --- printed circuit boards --- electrochemical biosensors --- Lab-on-PCB --- electrode pre-treatment --- electrophoresis --- agarose --- PCB technology --- DNA amplification --- RPA --- microheaters --- E. coli --- molecular diagnostics --- printed circuit board --- organotypic culture --- microchip electrophoresis --- stray capacitance --- capacitively coupled contactless conductivity detection --- planar grounded electrode --- Printed Circuit Board (PCB) --- biomedical --- electronic --- engineering --- PCB --- rapid prototyping --- 3D printing --- PCB-MEMS --- PCB reliability --- embedded components --- finite element analysis --- thermal analysis --- electronics --- sensors --- biosensors --- lab-on-chip
Choose an application
The progress in the area of nanotechnology has opened the door for the fabrication of soft, biological, and composite nanomaterials for targeted applications. Nanomaterials are known to enhance the properties and functionality of composite materials several fold. The properties for the desired applications can often be achieved by the addition of small amounts of nanomaterials into soft materials such as polymers, gels, and biomaterials. This book condenses investigations by scientific groups from highly diverse research fields, which will be beneficial for the wider scientific community.
Technology: general issues --- oxygen nanobubbles --- phospholipids --- polyethylene glycol --- ultrasound imaging --- electrospinning --- nanocomposites --- porous TiO2 nanofiber --- light harvesting --- additive --- dye-sensitized solar cells --- graphene oxide --- Sertoli cells --- Leydig cells --- apoptosis --- oxidative stress --- mitochondrial membrane potential --- DNA damage --- chitosan --- polycaprolactone --- shape memory --- stretchability --- polyurethane --- biocomposite --- methotrexate --- cubic phase --- magnetocubosomes --- monoolein --- liquid crystalline phase --- drug delivery system --- alternating magnetic field --- laser ablation --- nanofibers --- poly(ethylene oxide) (PEO) --- Au nanoparticles --- neutralization --- characterization of materials --- depth-sensing indentation --- adhesion --- the BG method --- non-destructive testing --- reagent-free colorimetric assay --- galactose determination --- nanoceria --- agarose gel --- galactosemia diagnosis --- nanodiamond --- composite --- 3D-printed scaffold --- n/a
Choose an application
Microalgae and seaweeds are a renewable source of potent bioactive ingredients with confirmed positive impacts on health and wellness. The interest in—and awareness of—the need to improve quality of life and well-being has led to a greater consumption of nutraceuticals, as well as the use of cosmeceuticals for “well-aging”. In this context, algae and microalgae are currently gaining immense popularity within the functional food, nutraceutical, and cosmeceutical industries. Recent advances in the characterization and evaluation of the biological properties of the whole material, fractions, or isolated compounds of algae and microalgae enable their use as ingredients for the development of novel nutraceutical and cosmeceutical products.
Medicine --- polysaccharides --- health benefits --- health risks --- biomedical --- polymer seasonal variation --- red seaweeds --- agarose --- agarotriose --- 3,6-anhydro-l-galactose --- prebiotics --- anti-colon cancer activity --- α-neoagarooligosaccharide hydrolase --- exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase --- BpGH117 --- 3,6-anhydro-L-galactose --- human gut bacterium --- Bacteroides plebeius --- marine ingredients --- algae --- sensitive skin --- cosmetics --- seaweed --- protein --- extraction --- bioactive peptides --- industrial application --- marine macroalgae --- ingredients --- additives --- bioactives --- nutricosmetics --- Caulerpa racemosa --- Ulva lactuca --- nutritional --- potential --- SWE --- peloids --- microalgae --- cyanobacteria --- dermocosmetics --- mineral water --- seawater --- anti-obesity --- anti-inflammation --- anti-steatosis --- molecular networking
Choose an application
Microalgae and seaweeds are a renewable source of potent bioactive ingredients with confirmed positive impacts on health and wellness. The interest in—and awareness of—the need to improve quality of life and well-being has led to a greater consumption of nutraceuticals, as well as the use of cosmeceuticals for “well-aging”. In this context, algae and microalgae are currently gaining immense popularity within the functional food, nutraceutical, and cosmeceutical industries. Recent advances in the characterization and evaluation of the biological properties of the whole material, fractions, or isolated compounds of algae and microalgae enable their use as ingredients for the development of novel nutraceutical and cosmeceutical products.
polysaccharides --- health benefits --- health risks --- biomedical --- polymer seasonal variation --- red seaweeds --- agarose --- agarotriose --- 3,6-anhydro-l-galactose --- prebiotics --- anti-colon cancer activity --- α-neoagarooligosaccharide hydrolase --- exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase --- BpGH117 --- 3,6-anhydro-L-galactose --- human gut bacterium --- Bacteroides plebeius --- marine ingredients --- algae --- sensitive skin --- cosmetics --- seaweed --- protein --- extraction --- bioactive peptides --- industrial application --- marine macroalgae --- ingredients --- additives --- bioactives --- nutricosmetics --- Caulerpa racemosa --- Ulva lactuca --- nutritional --- potential --- SWE --- peloids --- microalgae --- cyanobacteria --- dermocosmetics --- mineral water --- seawater --- anti-obesity --- anti-inflammation --- anti-steatosis --- molecular networking
Choose an application
The progress in the area of nanotechnology has opened the door for the fabrication of soft, biological, and composite nanomaterials for targeted applications. Nanomaterials are known to enhance the properties and functionality of composite materials several fold. The properties for the desired applications can often be achieved by the addition of small amounts of nanomaterials into soft materials such as polymers, gels, and biomaterials. This book condenses investigations by scientific groups from highly diverse research fields, which will be beneficial for the wider scientific community.
oxygen nanobubbles --- phospholipids --- polyethylene glycol --- ultrasound imaging --- electrospinning --- nanocomposites --- porous TiO2 nanofiber --- light harvesting --- additive --- dye-sensitized solar cells --- graphene oxide --- Sertoli cells --- Leydig cells --- apoptosis --- oxidative stress --- mitochondrial membrane potential --- DNA damage --- chitosan --- polycaprolactone --- shape memory --- stretchability --- polyurethane --- biocomposite --- methotrexate --- cubic phase --- magnetocubosomes --- monoolein --- liquid crystalline phase --- drug delivery system --- alternating magnetic field --- laser ablation --- nanofibers --- poly(ethylene oxide) (PEO) --- Au nanoparticles --- neutralization --- characterization of materials --- depth-sensing indentation --- adhesion --- the BG method --- non-destructive testing --- reagent-free colorimetric assay --- galactose determination --- nanoceria --- agarose gel --- galactosemia diagnosis --- nanodiamond --- composite --- 3D-printed scaffold --- n/a
Choose an application
Three-dimensional (3D) printing has evolved massively during the last years. The 3D printing technologies offer various advantages, including: i) tailor-made design, ii) rapid prototyping, and iii) manufacturing of complex structures. Importantly, 3D printing is currently finding its potential in tissue engineering, wound dressings, tissue models for drug testing, prosthesis, and biosensors, to name a few. One important factor is the optimized composition of inks that can facilitate the deposition of cells, fabrication of vascularized tissue and the structuring of complex constructs that are similar to functional organs. Biocomposite inks can include synthetic and natural polymers, such as poly (ε-caprolactone), polylactic acid, collagen, hyaluronic acid, alginate, nanocellulose, and may be complemented with cross-linkers to stabilize the constructs and with bioactive molecules to add functionality. Inks that contain living cells are referred to as bioinks and the process as 3D bioprinting. Some of the key aspects of the formulation of bioinks are, e.g., the tailoring of mechanical properties, biocompatibility and the rheological behavior of the ink which may affect the cell viability, proliferation, and cell differentiation.The current Special Issue emphasizes the bio-technological engineering of novel biocomposite inks for various 3D printing technologies, also considering important aspects in the production and use of bioinks.
bacteria biofabrication --- 3D printing --- tissue engineering --- probiotic food --- pine sawdust --- soda ethanol pulping --- nanocellulose --- cytotoxicity --- absorption --- wound dressings --- bioprinting --- cellulose --- hydrogel --- physical cross-linking --- 3D bioprinting --- biocomposite ink --- tubular tissue --- tubular organ --- bacterial nanocellulose --- cellulose nanofibrils --- cellulose nanocrystals --- bioink --- collagen --- ECM --- extracellular matrix --- bioinks --- biomanufacturing --- biocomposite --- forest-based MFC --- fibrils --- additive manufacturing --- artificial limb --- fused deposition modeling (FDM) --- biofabrication --- hydrogels --- growth factor cocktail --- bioactive scaffold --- printability --- carboxylated agarose --- free-standing --- human nasal chondrocytes --- clinical translational --- polyhydroxyalkanoates --- scaffolds --- biomedicine --- drug delivery --- vessel stenting --- cancer --- 3D cell culture --- CNF --- cancer stemness --- n/a
Choose an application
Lab-on-PCB devices can be considered an emerging technology. In fact, most of the contributions have been published during the last 5 years. It is mainly focussed on both biomedical and electronic applications. The book includes an interesting guide for using the different layers of the Printed Circuit Boards for developing new devices; guidelines for fabricating PCB-based electrochemical biosensors, and an overview of fluid manipulation devices fabricated using Printed Circuit Boards. In addition, current PCB-based devices are reported, and studies for several aspects of research and development of lab-on-PCB devices are described.
lab-on-PCB --- microfluidics --- flow driving --- actuators --- biomedical applications --- MEA --- brain cells --- electrical recordings --- Organ-on-Chip --- Brain-on-Chip --- printed circuit boards --- electrochemical biosensors --- Lab-on-PCB --- electrode pre-treatment --- electrophoresis --- agarose --- PCB technology --- DNA amplification --- RPA --- microheaters --- E. coli --- molecular diagnostics --- printed circuit board --- organotypic culture --- microchip electrophoresis --- stray capacitance --- capacitively coupled contactless conductivity detection --- planar grounded electrode --- Printed Circuit Board (PCB) --- biomedical --- electronic --- engineering --- PCB --- rapid prototyping --- 3D printing --- PCB-MEMS --- PCB reliability --- embedded components --- finite element analysis --- thermal analysis --- electronics --- sensors --- biosensors --- lab-on-chip
Choose an application
Three-dimensional (3D) printing has evolved massively during the last years. The 3D printing technologies offer various advantages, including: i) tailor-made design, ii) rapid prototyping, and iii) manufacturing of complex structures. Importantly, 3D printing is currently finding its potential in tissue engineering, wound dressings, tissue models for drug testing, prosthesis, and biosensors, to name a few. One important factor is the optimized composition of inks that can facilitate the deposition of cells, fabrication of vascularized tissue and the structuring of complex constructs that are similar to functional organs. Biocomposite inks can include synthetic and natural polymers, such as poly (ε-caprolactone), polylactic acid, collagen, hyaluronic acid, alginate, nanocellulose, and may be complemented with cross-linkers to stabilize the constructs and with bioactive molecules to add functionality. Inks that contain living cells are referred to as bioinks and the process as 3D bioprinting. Some of the key aspects of the formulation of bioinks are, e.g., the tailoring of mechanical properties, biocompatibility and the rheological behavior of the ink which may affect the cell viability, proliferation, and cell differentiation.The current Special Issue emphasizes the bio-technological engineering of novel biocomposite inks for various 3D printing technologies, also considering important aspects in the production and use of bioinks.
Information technology industries --- bacteria biofabrication --- 3D printing --- tissue engineering --- probiotic food --- pine sawdust --- soda ethanol pulping --- nanocellulose --- cytotoxicity --- absorption --- wound dressings --- bioprinting --- cellulose --- hydrogel --- physical cross-linking --- 3D bioprinting --- biocomposite ink --- tubular tissue --- tubular organ --- bacterial nanocellulose --- cellulose nanofibrils --- cellulose nanocrystals --- bioink --- collagen --- ECM --- extracellular matrix --- bioinks --- biomanufacturing --- biocomposite --- forest-based MFC --- fibrils --- additive manufacturing --- artificial limb --- fused deposition modeling (FDM) --- biofabrication --- hydrogels --- growth factor cocktail --- bioactive scaffold --- printability --- carboxylated agarose --- free-standing --- human nasal chondrocytes --- clinical translational --- polyhydroxyalkanoates --- scaffolds --- biomedicine --- drug delivery --- vessel stenting --- cancer --- 3D cell culture --- CNF --- cancer stemness
Listing 1 - 10 of 22 | << page >> |
Sort by
|