Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (3)

2019 (1)

Listing 1 - 4 of 4
Sort by

Book
Seed Dormancy : Molecular Control of Its Induction and Alleviation
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The appearance of the new generation in higher plants is ensured by the presence of viable seeds in the mother plant. A good number of signaling networks is necessary to provoke germination. Phytohormones play a key role in all stages of seed development, maturation, and dormancy acquisition. The dormancy of some seeds can be relieved through a tightly regulated process called after-ripening (AR) that occurs in viable seeds stored in a dry environment. Although ABA is directly involved in dormancy, recent data suggest that auxin also plays a preponderant role. On the other hand, the participation of reactive oxygen species (ROS) in the life of the seed is becoming increasingly confirmed. ROS accumulate at different stages of the seed’s life and are correlated with a low degree of dormancy. Thus, ROS increase upon AR and dormancy release. In the last decade, the advances in the knowledge of seed life have been noteworthy. In this Special Issue, those processes regulated by DOG1, auxin, and nucleic acid modifications are updated. Likewise, new data on the effect of alternating temperatures (AT) on dormancy release are here present. On the one hand, the transcriptome patterns stimulated at AT that encompasses ethylene and ROS signaling and metabolism together with ABA degradation were also discussed. Finally, it was also suggested that changes in endogenous γ-aminobutyric acid (GABA) may prevent seed germination.

Keywords

Research & information: general --- Biology, life sciences --- chestnut --- GABA --- seed germination --- carbon metabolism --- nitrogen metabolism --- DOG1 --- seed dormancy --- ABA --- ethylene --- clade-A PP2C phosphatase (AHG1 --- AHG3) --- after-ripening --- asDOG1 --- heme-group --- association mapping --- climate adaptation --- germination --- genomics --- legumes --- Medicago --- plasticity --- physical dormancy --- DNA methylation --- oxidation --- RNA stability --- seed vigour --- ROS --- primary dormancy --- ABI3 --- auxin --- YUC --- PIN --- ARF --- endosperm --- integuments --- AGL62 --- PRC2 --- RNA-Seq --- dormancy termination --- gene expression --- antioxidants --- ethylene signaling --- environmental signals --- long-lived mRNA --- monosomes --- auxin and ABA --- alternating temperatures --- chestnut --- GABA --- seed germination --- carbon metabolism --- nitrogen metabolism --- DOG1 --- seed dormancy --- ABA --- ethylene --- clade-A PP2C phosphatase (AHG1 --- AHG3) --- after-ripening --- asDOG1 --- heme-group --- association mapping --- climate adaptation --- germination --- genomics --- legumes --- Medicago --- plasticity --- physical dormancy --- DNA methylation --- oxidation --- RNA stability --- seed vigour --- ROS --- primary dormancy --- ABI3 --- auxin --- YUC --- PIN --- ARF --- endosperm --- integuments --- AGL62 --- PRC2 --- RNA-Seq --- dormancy termination --- gene expression --- antioxidants --- ethylene signaling --- environmental signals --- long-lived mRNA --- monosomes --- auxin and ABA --- alternating temperatures


Book
Seed Dormancy : Molecular Control of Its Induction and Alleviation
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The appearance of the new generation in higher plants is ensured by the presence of viable seeds in the mother plant. A good number of signaling networks is necessary to provoke germination. Phytohormones play a key role in all stages of seed development, maturation, and dormancy acquisition. The dormancy of some seeds can be relieved through a tightly regulated process called after-ripening (AR) that occurs in viable seeds stored in a dry environment. Although ABA is directly involved in dormancy, recent data suggest that auxin also plays a preponderant role. On the other hand, the participation of reactive oxygen species (ROS) in the life of the seed is becoming increasingly confirmed. ROS accumulate at different stages of the seed’s life and are correlated with a low degree of dormancy. Thus, ROS increase upon AR and dormancy release. In the last decade, the advances in the knowledge of seed life have been noteworthy. In this Special Issue, those processes regulated by DOG1, auxin, and nucleic acid modifications are updated. Likewise, new data on the effect of alternating temperatures (AT) on dormancy release are here present. On the one hand, the transcriptome patterns stimulated at AT that encompasses ethylene and ROS signaling and metabolism together with ABA degradation were also discussed. Finally, it was also suggested that changes in endogenous γ-aminobutyric acid (GABA) may prevent seed germination.


Book
Seed Dormancy : Molecular Control of Its Induction and Alleviation
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The appearance of the new generation in higher plants is ensured by the presence of viable seeds in the mother plant. A good number of signaling networks is necessary to provoke germination. Phytohormones play a key role in all stages of seed development, maturation, and dormancy acquisition. The dormancy of some seeds can be relieved through a tightly regulated process called after-ripening (AR) that occurs in viable seeds stored in a dry environment. Although ABA is directly involved in dormancy, recent data suggest that auxin also plays a preponderant role. On the other hand, the participation of reactive oxygen species (ROS) in the life of the seed is becoming increasingly confirmed. ROS accumulate at different stages of the seed’s life and are correlated with a low degree of dormancy. Thus, ROS increase upon AR and dormancy release. In the last decade, the advances in the knowledge of seed life have been noteworthy. In this Special Issue, those processes regulated by DOG1, auxin, and nucleic acid modifications are updated. Likewise, new data on the effect of alternating temperatures (AT) on dormancy release are here present. On the one hand, the transcriptome patterns stimulated at AT that encompasses ethylene and ROS signaling and metabolism together with ABA degradation were also discussed. Finally, it was also suggested that changes in endogenous γ-aminobutyric acid (GABA) may prevent seed germination.


Book
Plant Proteomic Research 2.0
Author:
ISBN: 3039210637 3039210629 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.

Keywords

14-3-3 proteins --- n/a --- targeted two-dimensional electrophoresis --- somatic embryogenesis --- nitrogen metabolism --- subtilase --- Sporisorium scitamineum --- non-orthodox seed --- antioxidant activity --- sweet potato plants infected by SPFMV --- photosynthesis --- B. acuminata petals --- chlorophyll deficiency --- seed proteomics --- imbibition --- pollination --- Sarpo Mira --- qRT-PCR --- holm oak --- tuber phosphoproteome --- isobaric tags for relative and absolute quantitation (iTRAQ) --- Quercus ilex --- nucleotide pyrophosphatase/phosphodiesterase --- lettuce --- ?-subunit --- protein phosphatase --- germination --- drought stress --- pyruvate biosynthesis --- weakening of carbon metabolism --- differential proteins --- heterotrimeric G protein --- organ --- LC-MS-based proteomics --- potato proteomics --- smut --- gel-free/label-free proteomics --- ? subunit --- shotgun proteomics --- 2D --- chloroplast --- proteome functional annotation --- Phalaenopsis --- Clematis terniflora DC. --- wheat --- Dn1-1 --- carbon metabolism --- physiological responses --- Zea mays --- phenylpropanoid biosynthesis --- ISR --- mass spectrometric analysis --- patatin --- leaf --- pea (Pisum sativum L.) --- maize --- ergosterol --- Camellia sinensis --- seed storage proteins --- silver nanoparticles --- elevated CO2 --- metacaspase --- SPV2 and SPVG --- SnRK1 --- MALDI-TOF/TOF --- (phospho)-proteomics --- leaf spot --- rice isogenic line --- wheat leaf rust --- pathway analysis --- phosphoproteome --- sugarcane --- senescence --- Oryza sativa L. --- Arabidopsis thaliana --- heat stress --- gene ontology --- innate immunity --- Pseudomonas syringae --- bolting --- chlorophylls --- shoot --- Simmondsia chinensis --- RT-qPCR --- stresses responses --- Solanum tuberosum --- seeds --- GC-TOF-MS --- sucrose --- proteome --- Puccinia recondita --- cultivar --- Zea mays L. --- secondary metabolism --- ROS --- Ricinus communis L. --- after-ripening --- cadmium --- Stagonospora nodorum --- virus induced gene silencing --- quantitative proteomics --- sweet potato plants non-infected by SPFMV --- affinity chromatography --- population variability --- GS3 --- fungal perception --- ammonium --- transcriptome profiling --- mass spectrometry analysis --- papain-like cysteine protease (PLCP) --- cold stress --- nitrate --- late blight disease --- early and late disease stages --- seed imbibition --- lesion mimic mutant --- protease --- proteome map --- seed dormancy --- petal --- 2-DE proteomics --- 2D DIGE --- root --- Phytophthora infestans --- differentially abundant proteins (DAPs) --- polyphenol oxidase --- degradome --- flavonoid --- 14-3-3 --- caspase-like --- proteomics --- RGG4 --- co-infection --- plasma membrane --- chlorotic mutation --- Medicago sativa --- RGG3 --- glycolysis --- barley --- 2-DE --- protein phosphorylation --- western blotting --- N utilization efficiency --- rice --- plant pathogenesis responses --- high temperature --- data-independent acquisition --- pattern recognition receptors --- vegetative storage proteins --- leaf cell wall proteome --- plant-derived smoke --- iTRAQ --- starch --- proteome profiling --- Morus

Listing 1 - 4 of 4
Sort by