Listing 1 - 6 of 6 |
Sort by
|
Choose an application
The book is a collection of articles on the themes of contact mechanics and non-linear dynamics. In particular, the contribution focus on the mechanisms that lead to interfacial energy dissipation, which is a crucial quantity to determine in order to correctly predict the non-linear dynamic response of mechanical systems. The book is a collection of nine journal papers, among those one editorial, one review paper, and seven articles. The papers consider different dissipative mechanisms, such as Coulomb friction, interfacial adhesion, and viscoelasticity, and study how the system response and stability is influenced by the interfacial interactions. The review paper describes old and recent test rigs for friction and wear measurements, focusing on their performance and range of operability.
Technology: general issues --- nonlinear dynamic response --- second harmonics --- experiments --- numerical modelling --- interface stiffness --- adhesion --- roughness --- adhesion enhancement --- JKR model --- Lennard–Jones --- friction testers --- tribometers --- viscoelastic materials --- rubber friction --- tyre --- elbow erosion --- turbulence flow --- gas-solid flow --- corrosion --- numerical simulation --- friction-induced vibrations --- mass-on-moving-belt --- dynamic vibration absorber --- tuned mass damper --- passive vibrations mitigation --- nonlinear dynamics --- basin of attraction --- self-excitation --- bi-stability --- multi-stability --- viscoelasticity --- contact mechanics --- finite element method --- adhesion hysteresis --- rough surfaces --- JKR theory --- friction --- dissipation --- contact nonlinearities
Choose an application
The book is a collection of articles on the themes of contact mechanics and non-linear dynamics. In particular, the contribution focus on the mechanisms that lead to interfacial energy dissipation, which is a crucial quantity to determine in order to correctly predict the non-linear dynamic response of mechanical systems. The book is a collection of nine journal papers, among those one editorial, one review paper, and seven articles. The papers consider different dissipative mechanisms, such as Coulomb friction, interfacial adhesion, and viscoelasticity, and study how the system response and stability is influenced by the interfacial interactions. The review paper describes old and recent test rigs for friction and wear measurements, focusing on their performance and range of operability.
nonlinear dynamic response --- second harmonics --- experiments --- numerical modelling --- interface stiffness --- adhesion --- roughness --- adhesion enhancement --- JKR model --- Lennard–Jones --- friction testers --- tribometers --- viscoelastic materials --- rubber friction --- tyre --- elbow erosion --- turbulence flow --- gas-solid flow --- corrosion --- numerical simulation --- friction-induced vibrations --- mass-on-moving-belt --- dynamic vibration absorber --- tuned mass damper --- passive vibrations mitigation --- nonlinear dynamics --- basin of attraction --- self-excitation --- bi-stability --- multi-stability --- viscoelasticity --- contact mechanics --- finite element method --- adhesion hysteresis --- rough surfaces --- JKR theory --- friction --- dissipation --- contact nonlinearities
Choose an application
The book is a collection of articles on the themes of contact mechanics and non-linear dynamics. In particular, the contribution focus on the mechanisms that lead to interfacial energy dissipation, which is a crucial quantity to determine in order to correctly predict the non-linear dynamic response of mechanical systems. The book is a collection of nine journal papers, among those one editorial, one review paper, and seven articles. The papers consider different dissipative mechanisms, such as Coulomb friction, interfacial adhesion, and viscoelasticity, and study how the system response and stability is influenced by the interfacial interactions. The review paper describes old and recent test rigs for friction and wear measurements, focusing on their performance and range of operability.
Technology: general issues --- nonlinear dynamic response --- second harmonics --- experiments --- numerical modelling --- interface stiffness --- adhesion --- roughness --- adhesion enhancement --- JKR model --- Lennard–Jones --- friction testers --- tribometers --- viscoelastic materials --- rubber friction --- tyre --- elbow erosion --- turbulence flow --- gas-solid flow --- corrosion --- numerical simulation --- friction-induced vibrations --- mass-on-moving-belt --- dynamic vibration absorber --- tuned mass damper --- passive vibrations mitigation --- nonlinear dynamics --- basin of attraction --- self-excitation --- bi-stability --- multi-stability --- viscoelasticity --- contact mechanics --- finite element method --- adhesion hysteresis --- rough surfaces --- JKR theory --- friction --- dissipation --- contact nonlinearities
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
Technology: general issues --- History of engineering & technology --- tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka’s magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction --- n/a --- Pacejka's magic formula
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka’s magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction --- n/a --- Pacejka's magic formula
Choose an application
Recent trends in vehicle engineering are testament to the great efforts that scientists and industries have made to seek solutions to enhance both the performance and safety of vehicular systems. This Special Issue aims to contribute to the study of modern vehicle dynamics, attracting recent experimental and in-simulation advances that are the basis for current technological growth and future mobility. The area involves research, studies, and projects derived from vehicle dynamics that aim to enhance vehicle performance in terms of handling, comfort, and adherence, and to examine safety optimization in the emerging contexts of smart, connected, and autonomous driving.This Special Issue focuses on new findings in the following topics:(1) Experimental and modelling activities that aim to investigate interaction phenomena from the macroscale, analyzing vehicle data, to the microscale, accounting for local contact mechanics; (2) Control strategies focused on vehicle performance enhancement, in terms of handling/grip, comfort and safety for passengers, motorsports, and future mobility scenarios; (3) Innovative technologies to improve the safety and performance of the vehicle and its subsystems; (4) Identification of vehicle and tire/wheel model parameters and status with innovative methodologies and algorithms; (5) Implementation of real-time software, logics, and models in onboard architectures and driving simulators; (6) Studies and analyses oriented toward the correlation among the factors affecting vehicle performance and safety; (7) Application use cases in road and off-road vehicles, e-bikes, motorcycles, buses, trucks, etc.
Technology: general issues --- History of engineering & technology --- tire model parameters identification --- artificial neural networks --- curve fitting --- Pacejka's magic formula --- intelligent vehicles --- autonomous vehicles --- microscopic traffic simulation --- autonomous driving --- friction estimate --- tire-based control --- ADAS --- potential friction --- energy consumption and recovery --- transmission layouts --- fuel-cell electric vehicles --- adhesion enhancement --- dimple model --- patterned surfaces --- viscoelasticity --- enhancement --- articulated vehicles --- stability analysis --- nonlinear dynamic model --- snake instability --- eigenvalue analysis --- central control --- non-linear model-based predictive control --- pitch behavior --- predictive control --- roll behavior --- self-steering behavior --- vehicle dynamics --- viscoelastic modulus --- rubber --- friction --- empirical modeling --- autonomous emergency steering --- multi-input multi-output model predictive control --- actuator dynamics --- control allocation --- handling enhancement --- road friction --- wear --- tyre --- suspension --- semi-active --- handling --- comfort --- optimisation --- directional stability --- road profile --- road unevenness --- vehicle-road interaction --- vertical vehicle excitation --- tire models --- tire tread --- motorcycle --- rider --- screw axis --- weave --- wobble --- multibody --- gravel pavement --- roughness --- straightedge --- power spectral density --- international roughness index --- vehicle response --- driving comfort --- sky-hook --- in-wheel motor --- semi-active suspension --- quarter-car model --- suspension performance --- suspension test bench --- vehicle stability --- road models --- quarter car models --- limit cycles --- acceleration speed portraits --- speed oscillations --- velocity bifurcations --- noisy limit cycles --- limit flows of trajectories --- Sommerfeld effects --- differential-algebraic systems --- polar coordinates of roads --- covariance equations --- stability in mean --- supercritical speeds --- analytical travel speed amplitudes --- Floquet theory applied to limit cycles --- non-pneumatic tire --- finite element analysis --- steady state analysis --- tire characterization --- footprint --- contact patch --- longitudinal interaction
Listing 1 - 6 of 6 |
Sort by
|