Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book.
Research & information: general --- white sea --- arctic ocean --- net tow --- turbulence avoidance --- feeding mode --- National Centers for Environmental Information --- European Centre for Medium-Range Weather Forecasts --- plankton --- turbulence --- data analysis --- copepod --- numerical simulation --- immersed boundary method --- multi-scale simulations --- form-function relation --- Kolmogorov --- chemosensory --- signaling --- zooplankton --- jellyfish --- hydrodynamics --- escape behavior --- Acartia tonsa --- copepods --- cruising --- escape swimming --- kinematics --- power --- cost of transport --- locomotion --- reorientation --- swimming microorganism --- nutrient patchiness --- phytoplankton --- surge uptake --- nutrient depletion --- turbulent history --- microplastics --- swimming behavior --- imaging --- Temora turbinata --- propulsion --- rotational physics --- convergent evolution --- torque --- moment of inertia --- animal movement --- plankton jumping --- impulsively generated viscous vortex ring --- impulsive Stokeslet --- impulsive stresslet --- elastic collision --- Froude propulsion efficiency --- added mass coefficient --- n/a
Choose an application
The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book.
white sea --- arctic ocean --- net tow --- turbulence avoidance --- feeding mode --- National Centers for Environmental Information --- European Centre for Medium-Range Weather Forecasts --- plankton --- turbulence --- data analysis --- copepod --- numerical simulation --- immersed boundary method --- multi-scale simulations --- form-function relation --- Kolmogorov --- chemosensory --- signaling --- zooplankton --- jellyfish --- hydrodynamics --- escape behavior --- Acartia tonsa --- copepods --- cruising --- escape swimming --- kinematics --- power --- cost of transport --- locomotion --- reorientation --- swimming microorganism --- nutrient patchiness --- phytoplankton --- surge uptake --- nutrient depletion --- turbulent history --- microplastics --- swimming behavior --- imaging --- Temora turbinata --- propulsion --- rotational physics --- convergent evolution --- torque --- moment of inertia --- animal movement --- plankton jumping --- impulsively generated viscous vortex ring --- impulsive Stokeslet --- impulsive stresslet --- elastic collision --- Froude propulsion efficiency --- added mass coefficient --- n/a
Choose an application
The cooperation between plankton biologists and fluid dynamists has enhanced our knowledge of life within the plankton communities in ponds, lakes, and seas. This book assembled contributions on plankton–flow interactions, with an emphasis on syntheses and/or predictions. However, a wide range of novel insights, reasonable scenarios, and founded critiques are also considered in this book.
Research & information: general --- white sea --- arctic ocean --- net tow --- turbulence avoidance --- feeding mode --- National Centers for Environmental Information --- European Centre for Medium-Range Weather Forecasts --- plankton --- turbulence --- data analysis --- copepod --- numerical simulation --- immersed boundary method --- multi-scale simulations --- form-function relation --- Kolmogorov --- chemosensory --- signaling --- zooplankton --- jellyfish --- hydrodynamics --- escape behavior --- Acartia tonsa --- copepods --- cruising --- escape swimming --- kinematics --- power --- cost of transport --- locomotion --- reorientation --- swimming microorganism --- nutrient patchiness --- phytoplankton --- surge uptake --- nutrient depletion --- turbulent history --- microplastics --- swimming behavior --- imaging --- Temora turbinata --- propulsion --- rotational physics --- convergent evolution --- torque --- moment of inertia --- animal movement --- plankton jumping --- impulsively generated viscous vortex ring --- impulsive Stokeslet --- impulsive stresslet --- elastic collision --- Froude propulsion efficiency --- added mass coefficient --- white sea --- arctic ocean --- net tow --- turbulence avoidance --- feeding mode --- National Centers for Environmental Information --- European Centre for Medium-Range Weather Forecasts --- plankton --- turbulence --- data analysis --- copepod --- numerical simulation --- immersed boundary method --- multi-scale simulations --- form-function relation --- Kolmogorov --- chemosensory --- signaling --- zooplankton --- jellyfish --- hydrodynamics --- escape behavior --- Acartia tonsa --- copepods --- cruising --- escape swimming --- kinematics --- power --- cost of transport --- locomotion --- reorientation --- swimming microorganism --- nutrient patchiness --- phytoplankton --- surge uptake --- nutrient depletion --- turbulent history --- microplastics --- swimming behavior --- imaging --- Temora turbinata --- propulsion --- rotational physics --- convergent evolution --- torque --- moment of inertia --- animal movement --- plankton jumping --- impulsively generated viscous vortex ring --- impulsive Stokeslet --- impulsive stresslet --- elastic collision --- Froude propulsion efficiency --- added mass coefficient
Listing 1 - 3 of 3 |
Sort by
|