Listing 1 - 8 of 8 |
Sort by
|
Choose an application
In this era of technological progress and given the need for welfare and safety, everything that is manufactured and maintained must comply with such needs. We would all like to live in a safe house that will not collapse on us. We would all like to walk on a safe road and never see a chasm open in front of us. We would all like to cross a bridge and reach the other side safely. We all would like to feel safe and secure when taking a plane, ship, train, or using any equipment. All this may be possible with the adoption of adequate manufacturing processes, with non-destructive inspection of final parts and monitoring during the in-service life of components. Above all, maintenance should be imperative. This requires effective non-destructive testing techniques and procedures. This Special Issue is a collection of some of the latest research in these areas, aiming to highlight new ideas and ways to deal with challenging issues worldwide. Different types of materials and structures are considered, different non-destructive testing techniques are employed with new approaches for data treatment proposed as well as numerical simulations. This can serve as food for thought for the community involved in the inspection of materials and structures as well as condition monitoring.
History of engineering & technology --- reinforce concrete --- rebar --- defect --- self-magnetic behavior --- magnetic flux density --- probability paper method --- Passive Magnetic Inspection (PMI) --- aluminum alloy wheel --- X-ray --- nondestructive testing --- defect detection --- adaptive threshold --- morphological reconstruction --- non-destructive inspection --- laser ultrasonic imaging --- Lamb wave --- delamination --- composite laminate --- frescoed surfaces --- non-destructive test --- plaster detachment --- impact hammer test --- historical masonry building --- thick multilayer composites --- discrete defects --- ultrasonic pulse echo --- nondestructive testing (NDT) --- recurrence plot (RP) --- recurrence quantification analysis (RQA) --- statistical results --- chaotic behavior --- phased array ultrasonic --- composites --- signal sensitivity --- diffuse ultrasonic waves --- cross-ply fiber reinforced composite --- defect localization --- non-destructive tests --- damage assessment --- residual properties --- Finite Element Method --- Damage Index --- non-destructive damage detection --- steel wire ropes --- review --- electromagnetic detection --- optical detection --- ultrasonic guided wave --- basalt fibers --- polyamide --- polypropylene --- impact damage --- lock-in thermography --- ultrasonic testing --- debonding --- composite damage --- electromechanical impedance --- piezoelectric --- FEM simulation --- non-destructive testing evaluation --- infrared thermography testing --- image enhancement --- n/a
Choose an application
In this era of technological progress and given the need for welfare and safety, everything that is manufactured and maintained must comply with such needs. We would all like to live in a safe house that will not collapse on us. We would all like to walk on a safe road and never see a chasm open in front of us. We would all like to cross a bridge and reach the other side safely. We all would like to feel safe and secure when taking a plane, ship, train, or using any equipment. All this may be possible with the adoption of adequate manufacturing processes, with non-destructive inspection of final parts and monitoring during the in-service life of components. Above all, maintenance should be imperative. This requires effective non-destructive testing techniques and procedures. This Special Issue is a collection of some of the latest research in these areas, aiming to highlight new ideas and ways to deal with challenging issues worldwide. Different types of materials and structures are considered, different non-destructive testing techniques are employed with new approaches for data treatment proposed as well as numerical simulations. This can serve as food for thought for the community involved in the inspection of materials and structures as well as condition monitoring.
reinforce concrete --- rebar --- defect --- self-magnetic behavior --- magnetic flux density --- probability paper method --- Passive Magnetic Inspection (PMI) --- aluminum alloy wheel --- X-ray --- nondestructive testing --- defect detection --- adaptive threshold --- morphological reconstruction --- non-destructive inspection --- laser ultrasonic imaging --- Lamb wave --- delamination --- composite laminate --- frescoed surfaces --- non-destructive test --- plaster detachment --- impact hammer test --- historical masonry building --- thick multilayer composites --- discrete defects --- ultrasonic pulse echo --- nondestructive testing (NDT) --- recurrence plot (RP) --- recurrence quantification analysis (RQA) --- statistical results --- chaotic behavior --- phased array ultrasonic --- composites --- signal sensitivity --- diffuse ultrasonic waves --- cross-ply fiber reinforced composite --- defect localization --- non-destructive tests --- damage assessment --- residual properties --- Finite Element Method --- Damage Index --- non-destructive damage detection --- steel wire ropes --- review --- electromagnetic detection --- optical detection --- ultrasonic guided wave --- basalt fibers --- polyamide --- polypropylene --- impact damage --- lock-in thermography --- ultrasonic testing --- debonding --- composite damage --- electromechanical impedance --- piezoelectric --- FEM simulation --- non-destructive testing evaluation --- infrared thermography testing --- image enhancement --- n/a
Choose an application
In this era of technological progress and given the need for welfare and safety, everything that is manufactured and maintained must comply with such needs. We would all like to live in a safe house that will not collapse on us. We would all like to walk on a safe road and never see a chasm open in front of us. We would all like to cross a bridge and reach the other side safely. We all would like to feel safe and secure when taking a plane, ship, train, or using any equipment. All this may be possible with the adoption of adequate manufacturing processes, with non-destructive inspection of final parts and monitoring during the in-service life of components. Above all, maintenance should be imperative. This requires effective non-destructive testing techniques and procedures. This Special Issue is a collection of some of the latest research in these areas, aiming to highlight new ideas and ways to deal with challenging issues worldwide. Different types of materials and structures are considered, different non-destructive testing techniques are employed with new approaches for data treatment proposed as well as numerical simulations. This can serve as food for thought for the community involved in the inspection of materials and structures as well as condition monitoring.
History of engineering & technology --- reinforce concrete --- rebar --- defect --- self-magnetic behavior --- magnetic flux density --- probability paper method --- Passive Magnetic Inspection (PMI) --- aluminum alloy wheel --- X-ray --- nondestructive testing --- defect detection --- adaptive threshold --- morphological reconstruction --- non-destructive inspection --- laser ultrasonic imaging --- Lamb wave --- delamination --- composite laminate --- frescoed surfaces --- non-destructive test --- plaster detachment --- impact hammer test --- historical masonry building --- thick multilayer composites --- discrete defects --- ultrasonic pulse echo --- nondestructive testing (NDT) --- recurrence plot (RP) --- recurrence quantification analysis (RQA) --- statistical results --- chaotic behavior --- phased array ultrasonic --- composites --- signal sensitivity --- diffuse ultrasonic waves --- cross-ply fiber reinforced composite --- defect localization --- non-destructive tests --- damage assessment --- residual properties --- Finite Element Method --- Damage Index --- non-destructive damage detection --- steel wire ropes --- review --- electromagnetic detection --- optical detection --- ultrasonic guided wave --- basalt fibers --- polyamide --- polypropylene --- impact damage --- lock-in thermography --- ultrasonic testing --- debonding --- composite damage --- electromechanical impedance --- piezoelectric --- FEM simulation --- non-destructive testing evaluation --- infrared thermography testing --- image enhancement
Choose an application
This book presents interesting samples of theoretical and practical advances of symmetry in multidisciplinary engineering applications. It covers several applications, such as accessibility and traffic congestion management, path planning for mobile robots, analysis of shipment service networks, fault diagnosis methods in electrical circuits and electrical machines, geometrical issues in architecture, geometric modeling and virtual reconstruction, design of noise detectors, filters, and segmentation methods for image processing, and cyclic symmetric structures in turbomachinery applications, to name but a few. The contributions included in this book depict the state of the art in this field and lay the foundation for the possibilities that the study of symmetry has in multidisciplinary applications in the field of engineering.
edge preserving --- fault diagnosis --- accessibility --- urban traffic planning --- sensitivity analysis --- graphic modelling --- Coalbrookdale (Shropshire) --- mobile robot --- asymmetry --- convexity/concavity --- flying buttresses --- vibration --- time-space network --- linearization technique --- friction damping --- adaptive threshold --- ring damper --- broad learning model --- Hilbert transform --- express shipment --- symmetry --- traffic control --- railcar flow distribution --- optimization --- industrial archaeology --- high order urban hospitals (HOUHs) --- thin-walled gear --- rampant arch --- traffic congestion --- railway transportation --- robots --- virtual reconstruction --- feature selection --- geometric modeling --- path search --- industrial heritage --- weighted mean filter --- topology --- A* algorithm --- traffic forecasting --- feature interaction --- classification --- peaks distribution --- rolling bearings --- noise detector --- 3D slicer --- inclined plane --- computing applications --- environmental modeling --- extension --- service network design --- evaluation model --- anomaly detection --- random forest --- local preserving projection --- complex networks --- computer engineering --- electronic devices --- BP neural network --- mechanical structures --- segmentation --- lifting wavelet --- semi-supervised random forest --- railway network --- cathedral --- local monotonicity --- aged --- optimum --- path planning --- local data features --- local inflection --- conditional mutual information --- energy dissipation --- support vector machine --- variational mode decomposition --- Agustín de Betancourt --- optimization criteria --- tumor --- trip impedance based on public transportation --- Fisher linear discriminant analysis --- synchronization --- clustering --- geometry --- electrical circuits --- random value impulse noise
Choose an application
Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI, fCover, plant height, and biomass) and biochemical parameters (leaf pigmentation and water content) directly influence the radiative transfer process of sunlight in vegetation, determining the amount of radiation measured by passive sensors in the visible and infrared portions of the electromagnetic spectrum. Optical remote sensing (RS) methods build relationships exploiting in situ measurements and/or as outputs of physical canopy radiative transfer models. The increased availability of passive (radar and LiDAR) RS data has fostered their use in many applications for the analysis of land surface properties and processes, thanks also to their insensitivity to weather conditions and the capability to exploit rich structural and textural information. Data fusion and multi-sensor integration techniques are pressing topics to fully exploit the information conveyed by both optical and microwave bands.
artificial neural network --- downscaling --- simulation --- 3D point cloud --- European beech --- consistency --- adaptive threshold --- evaluation --- photosynthesis --- geographic information system --- P-band PolInSAR --- validation --- density-based clustering --- structure from motion (SfM) --- EPIC --- Tanzania --- signal attenuation --- trunk --- canopy closure --- REDD+ --- unmanned aerial vehicle (UAV) --- forest --- recursive feature elimination --- Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) --- aboveground biomass --- random forest --- uncertainty --- household survey --- spectral information --- forests biomass --- root biomass --- biomass --- unmanned aerial vehicle --- Brazilian Amazon --- VIIRS --- global positioning system --- LAI --- photochemical reflectance index (PRI) --- allometric scaling and resource limitation --- R690/R630 --- modelling aboveground biomass --- leaf area index --- forest degradation --- spectral analyses --- terrestrial laser scanning --- BAAPA --- leaf area index (LAI) --- stem volume estimation --- tomographic profiles --- polarization coherence tomography (PCT) --- canopy gap fraction --- automated classification --- HemiView --- remote sensing --- multisource remote sensing --- Pléiades imagery --- photogrammetric point cloud --- farm types --- terrestrial LiDAR --- altitude --- RapidEye --- forest aboveground biomass --- recovery --- southern U.S. forests --- NDVI --- machine-learning --- conifer forest --- satellite --- chlorophyll fluorescence (ChlF) --- tree heights --- phenology --- point cloud --- local maxima --- clumping index --- MODIS --- digital aerial photograph --- Mediterranean --- hemispherical sky-oriented photo --- managed temperate coniferous forests --- fixed tree window size --- drought --- GLAS --- smartphone-based method --- forest above ground biomass (AGB) --- forest inventory --- over and understory cover --- sampling design
Choose an application
This book provides extensive information about advanced control techniques in electric drives. Multiple control and estimation methods are studied for position and speed tracking in different drives. Artificial intelligence tools, such as fuzzy logic and neural networks, are used for specific applications using electric drives.
History of engineering & technology --- PMSM drive --- current control --- deadbeat predictive control --- equivalent input disturbance --- BSAII --- Euclidean distance --- energy management --- E-REV --- overhead transmission line --- UAV inspection --- safe distance --- multi-source data fusion --- adaptive threshold --- permanent magnet synchronous motor --- second-order sliding mode control --- cascade control --- robustness --- PMSM --- model predictive control --- parameter identification --- hybrid electric vehicles (HEVs) --- mode transition --- adaptive sliding mode control (A-SMC) --- clutch actuator --- PI observer --- fractional order proportional-integral-differential (FOPID) --- indirect vector control --- position control of motor --- induction motor --- sensorless control --- sliding mode observer --- RBFNN-based self-tuning PID controller --- I-f startup strategy --- PMLSM --- position sensorless control --- high-frequency square-wave voltage injection --- FIR filter --- maglev train --- automotive electric powertrain --- rotor position sensor --- resolver --- inductive position sensor --- eddy current position sensor --- Hall sensor --- magnetoresistive position sensor --- Hall sensors --- brushless direct current motor drive system --- power electronics --- industrial application --- integrated electric drive system --- electromechanical coupling --- harmonic torque reduction strategy --- quantized --- nonlinear systems --- time delay --- lyapunov approach --- real-time implementation --- neural fuzzy controller --- I-f control strategy --- fractional order control --- synergetic control --- sliding mode control --- motor drives --- advanced control --- power converters --- estimation --- sensor --- artificial intelligence
Choose an application
This book provides extensive information about advanced control techniques in electric drives. Multiple control and estimation methods are studied for position and speed tracking in different drives. Artificial intelligence tools, such as fuzzy logic and neural networks, are used for specific applications using electric drives.
PMSM drive --- current control --- deadbeat predictive control --- equivalent input disturbance --- BSAII --- Euclidean distance --- energy management --- E-REV --- overhead transmission line --- UAV inspection --- safe distance --- multi-source data fusion --- adaptive threshold --- permanent magnet synchronous motor --- second-order sliding mode control --- cascade control --- robustness --- PMSM --- model predictive control --- parameter identification --- hybrid electric vehicles (HEVs) --- mode transition --- adaptive sliding mode control (A-SMC) --- clutch actuator --- PI observer --- fractional order proportional-integral-differential (FOPID) --- indirect vector control --- position control of motor --- induction motor --- sensorless control --- sliding mode observer --- RBFNN-based self-tuning PID controller --- I-f startup strategy --- PMLSM --- position sensorless control --- high-frequency square-wave voltage injection --- FIR filter --- maglev train --- automotive electric powertrain --- rotor position sensor --- resolver --- inductive position sensor --- eddy current position sensor --- Hall sensor --- magnetoresistive position sensor --- Hall sensors --- brushless direct current motor drive system --- power electronics --- industrial application --- integrated electric drive system --- electromechanical coupling --- harmonic torque reduction strategy --- quantized --- nonlinear systems --- time delay --- lyapunov approach --- real-time implementation --- neural fuzzy controller --- I-f control strategy --- fractional order control --- synergetic control --- sliding mode control --- motor drives --- advanced control --- power converters --- estimation --- sensor --- artificial intelligence
Choose an application
This book provides extensive information about advanced control techniques in electric drives. Multiple control and estimation methods are studied for position and speed tracking in different drives. Artificial intelligence tools, such as fuzzy logic and neural networks, are used for specific applications using electric drives.
History of engineering & technology --- PMSM drive --- current control --- deadbeat predictive control --- equivalent input disturbance --- BSAII --- Euclidean distance --- energy management --- E-REV --- overhead transmission line --- UAV inspection --- safe distance --- multi-source data fusion --- adaptive threshold --- permanent magnet synchronous motor --- second-order sliding mode control --- cascade control --- robustness --- PMSM --- model predictive control --- parameter identification --- hybrid electric vehicles (HEVs) --- mode transition --- adaptive sliding mode control (A-SMC) --- clutch actuator --- PI observer --- fractional order proportional-integral-differential (FOPID) --- indirect vector control --- position control of motor --- induction motor --- sensorless control --- sliding mode observer --- RBFNN-based self-tuning PID controller --- I-f startup strategy --- PMLSM --- position sensorless control --- high-frequency square-wave voltage injection --- FIR filter --- maglev train --- automotive electric powertrain --- rotor position sensor --- resolver --- inductive position sensor --- eddy current position sensor --- Hall sensor --- magnetoresistive position sensor --- Hall sensors --- brushless direct current motor drive system --- power electronics --- industrial application --- integrated electric drive system --- electromechanical coupling --- harmonic torque reduction strategy --- quantized --- nonlinear systems --- time delay --- lyapunov approach --- real-time implementation --- neural fuzzy controller --- I-f control strategy --- fractional order control --- synergetic control --- sliding mode control --- motor drives --- advanced control --- power converters --- estimation --- sensor --- artificial intelligence
Listing 1 - 8 of 8 |
Sort by
|