Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2021 (3)

2019 (3)

Listing 1 - 6 of 6
Sort by

Book
Distributed Energy Resources Management
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

At present, the impact of distributed energy resources in the operation of power and energy systems is unquestionable at the distribution level, but also at the whole power system management level. Increased flexibility is required to accommodate intermittent distributed generation and electric vehicle charging. Demand response has already been proven to have a great potential to contribute to an increased system efficiency while bringing additional benefits, especially to the consumers. Distributed storage is also promising, e.g., when jointly used with the currently increasing use of photovoltaic panels. This book addresses the management of distributed energy resources. The focus includes methods and techniques to achieve an optimized operation, to aggregate the resources, namely, by virtual power players, and to remunerate them. The integration of distributed resources in electricity markets is also addressed as a main drive for their efficient use.


Book
Distributed Energy Resources Management
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

At present, the impact of distributed energy resources in the operation of power and energy systems is unquestionable at the distribution level, but also at the whole power system management level. Increased flexibility is required to accommodate intermittent distributed generation and electric vehicle charging. Demand response has already been proven to have a great potential to contribute to an increased system efficiency while bringing additional benefits, especially to the consumers. Distributed storage is also promising, e.g., when jointly used with the currently increasing use of photovoltaic panels. This book addresses the management of distributed energy resources. The focus includes methods and techniques to achieve an optimized operation, to aggregate the resources, namely, by virtual power players, and to remunerate them. The integration of distributed resources in electricity markets is also addressed as a main drive for their efficient use.


Book
Distributed Energy Resources Management
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

At present, the impact of distributed energy resources in the operation of power and energy systems is unquestionable at the distribution level, but also at the whole power system management level. Increased flexibility is required to accommodate intermittent distributed generation and electric vehicle charging. Demand response has already been proven to have a great potential to contribute to an increased system efficiency while bringing additional benefits, especially to the consumers. Distributed storage is also promising, e.g., when jointly used with the currently increasing use of photovoltaic panels. This book addresses the management of distributed energy resources. The focus includes methods and techniques to achieve an optimized operation, to aggregate the resources, namely, by virtual power players, and to remunerate them. The integration of distributed resources in electricity markets is also addressed as a main drive for their efficient use.


Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency


Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency


Book
Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications.

Keywords

History of engineering & technology --- three-phase rectifier --- PFC --- switch-mode rectifier --- ZVS --- ZCS --- single stage micro-inverter --- burst control --- variable frequency control --- maximum power-point tracking --- grid-connected photovoltaic systems --- cascade multilevel converters --- multistring converters --- T-type converters --- power clipping --- ESS sizing --- grid-tied PV plant --- cascaded H-bridge --- photovoltaic inverter --- module level --- switching modulation strategy --- energy yield --- photovoltaic (PV) --- virtual synchronous generator (VSG) --- frequency response (FR) --- power reserve control (PRC) --- active power up-regulation --- dual inverter --- open-end winding transformer --- photovoltaic application --- filter --- DC–AC converters --- efficiency --- neutral-point-clamped inverter --- PV applications --- PV inverters --- PV systems --- quasi-z-source --- two-level inverter --- three-level inverter --- converter topologies --- partial shading --- photovoltaic (PV) arrays --- multiple maximas --- mismatch --- differential power processing (DPP) --- series-parallel (SP) --- total-cross-tied (TCT) --- bridge-linked (BL) --- center-cross-tied (CCT) --- quasi-Z-source inverter --- double-frequency ripple --- ripple vector cancellation --- shoot-through duty cycle --- modulation --- DC microgrid --- DC electric spring --- distributed cooperative control --- adaptive droop control --- consensus algorithm --- Electric spring --- hierarchical control --- coordinated control --- power decoupling control --- droop control --- microgrid --- microinverter --- variable dc-link voltage --- photovoltaic --- solar energy --- renewable energy --- residential systems --- PV generators --- active power --- reactive power --- Renewable energy --- grid codes --- capability curves --- transformerless inverter --- full bridge inverter --- leakage current --- NPC topology --- full-bridge inverter --- PV microinverters --- single-stage --- buck-boost --- tapped inductor --- modular multilevel converter --- photovoltaic power system --- grid integration --- control system --- distributed renewable energy source --- energy storage --- 1500 V photovoltaic (PV) --- reliability --- cost-oriented design --- DC–DC converter --- series resonance converter --- wide range converter --- bidirectional switch --- conversion efficiency

Listing 1 - 6 of 6
Sort by