Narrow your search
Listing 1 - 8 of 8
Sort by

Book
Active vibration and noise control, design towards performance limit : a new paradigm to active control
Author:
ISBN: 9811941165 9811941157 Year: 2022 Publisher: Gateway East, Singapore : Springer,


Book
Vibration control systems utilizing smart materials actuators
Author:
ISBN: 1634852087 9781634852081 9781634851701 1634851706 Year: 2016 Publisher: New York : Nova Publishers,

Active noise control systems : algorithms and DSP implementations
Authors: ---
ISBN: 0471134244 Year: 1996 Publisher: New York : John Wiley & Sons, Inc.,

Signal processing for active control
Author:
ISBN: 9780122370854 0122370856 9786611743598 1281743593 0080517137 9780080517131 9781281743596 6611743596 Year: 2001 Publisher: San Diego, Calif. London

Loading...
Export citation

Choose an application

Bookmark

Abstract

Signal Processing for Active Control sets out the signal processing and automatic control techniques that are used in the analysis and implementation of active systems for the control of sound and vibration. After reviewing the performance limitations introduced by physical aspects of active control, Stephen Elliott presents the calculation of the optimal performance and the implementation of adaptive real time controllers for a wide variety of active control systems.Active sound and vibration control are technologically important problems with many applications. 'Act

Noise reduction by wavelet thresholding
Author:
ISBN: 0387952446 1461301459 9780387952444 Year: 2001 Volume: 161 Publisher: Berlin : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Wavelet methods have become a widely spread tool in signal and image process­ ing tasks. This book deals with statistical applications, especially wavelet based smoothing. The methods described in this text are examples of non-linear and non­ parametric curve fitting. The book aims to contribute to the field both among statis­ ticians and in the application oriented world (including but not limited to signals and images). Although it also contains extensive analyses of some existing methods, it has no intention whatsoever to be a complete overview of the field: the text would show too much bias towards my own algorithms. I rather present new material and own insights in the questions involved with wavelet based noise reduction. On the other hand, the presented material does cover a whole range of methodologies, and in that sense, the book may serve as an introduction into the domain of wavelet smoothing. Throughout the text, three main properties show up ever again: sparsity, locality and multiresolution. Nearly all wavelet based methods exploit at least one of these properties in some or the other way. These notes present research results of the Belgian Programme on Interuniver­ sity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture. The scientific responsibility rests with me. My research was financed by a grant (1995 - 1999) from the Flemish Institute for the Promotion of Scientific and Technological Research in the Industry (IWT).

Keywords

Stochastic processes --- Numerical approximation theory --- Electronics --- Signal processing --- Electronic noise --- Wavelets (Mathematics) --- Active noise and vibration control. --- Traitement du signal --- Bruit électronique --- Ondelettes --- Contrôle actif du bruit et des vibrations --- Digital techniques --- Statistical methods. --- Automatic control. --- Techniques numériques --- Méthodes statistiques --- Commande automatique --- Statistical methods --- Automatic control --- 681.3*I43 --- -Signal processing --- -Wavelets (Mathematics) --- Wavelet analysis --- Harmonic analysis --- Processing, Signal --- Information measurement --- Signal theory (Telecommunication) --- Noise, Electronic --- Electric noise --- Enhancement: filering; geometric correction; grayscale manipulation; registration; sharpening and deblurring; smoothing (Image processing) --- -Statistical methods --- Basic Sciences. Statistics --- Statistics (General) --- Active noise and vibration control --- Electrical & Computer Engineering --- Engineering & Applied Sciences --- Telecommunications --- Wavelets (Mathematics). --- Statistics (General). --- 681.3*I43 Enhancement: filering; geometric correction; grayscale manipulation; registration; sharpening and deblurring; smoothing (Image processing) --- Bruit électronique --- Contrôle actif du bruit et des vibrations --- Techniques numériques --- Méthodes statistiques --- Active noise and vibration cancellation --- Active noise control --- Active vibration control --- ANVC (Active noise and vibration control) --- Electro-acoustics --- Acoustic impedance --- Digital techniques&delete& --- Applied mathematics. --- Engineering mathematics. --- Vibration. --- Dynamical systems. --- Dynamics. --- Statistics . --- Mathematical and Computational Engineering. --- Vibration, Dynamical Systems, Control. --- Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. --- Statistical analysis --- Statistical data --- Statistical science --- Mathematics --- Econometrics --- Dynamical systems --- Kinetics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Cycles --- Sound --- Engineering --- Engineering analysis --- Mathematical analysis --- Information, Théorie de l' --- Signal processing - Digital techniques - Statistical methods --- Electronic noise - Automatic control --- Theorie du signal


Book
Piezoelectric Transducers : Materials, Devices and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advances in miniaturization of sensors, actuators, and smart systems are receiving substantial industrial attention, and a wide variety of transducers are commercially available or with high potential to impact emerging markets. Substituting existing products based on bulk materials, in fields such as automotive, environment, food, robotics, medicine, biotechnology, communications, and other technologies, with reduced size, lower cost, and higher performance, is now possible, with potential for manufacturing using advanced silicon integrated circuits technology or alternative additive techniques from the mili- to the nano-scale. In this Special Issue, which is focused on piezoelectric transducers, a wide range of topics are covered, including the design, fabrication, characterization, packaging, and system integration or final applications of mili/micro/nano-electro-mechanical systems based transducers.

Keywords

History of engineering & technology --- cylindrical composite --- piezoceramic/epoxy composite --- electromechanical characteristics --- transducer --- piezoelectric actuators --- positioning --- trajectory control --- numerical analysis --- trajectory planning --- square piezoelectric vibrator --- resonance --- piezoelectric diaphragm pump --- flexible support --- piezoelectric resonance pump --- piezoelectric ceramics actuators --- hysteresis modeling --- Bouc–Wen model --- P-type IL --- MFA control --- SM control --- evidence theory --- active vibration control --- piezoelectric smart structure --- piezoelectric material --- multiphysics simulation --- finite element method (FEM) --- fluid–structure interaction (FSI) --- micro electromechanical systems (MEMS) --- traveling waves --- piezoelectric --- microactuator --- MEMS --- piezoelectric current sensing device --- two-wire power cord --- cymbal structure --- force amplification effect --- sensitivity --- ciliary bodies touch beam --- piezoelectric tactile feedback devices --- anisotropic vibration tactile model --- human factor experiment --- nondestructive testing --- maturity method --- concrete early-age strength --- SmartRock --- ultrasonic waves --- PZT (piezoelectric) sensors --- structural health monitoring --- AlN thin film --- piezoelectric effect --- resonant accelerometer --- z-axis --- debonding --- non-destructive testing --- electromechanical impedance --- damage detection --- impedance-based technique --- damage depth --- piezoelectric vibration energy harvester --- frequency up-conversion mechanism --- impact --- PZT thick film --- piezoelectric ceramic materials --- Duhem model --- hysteresis model --- class-C power amplifier --- diode expander --- piezoelectric transducers --- point-of-care ultrasound systems --- transverse impact --- frequency up-conversion --- piezoelectric bimorph --- human-limb motion --- hybrid energy harvester --- cascade-connected transducer --- low frequency --- small size --- finite element --- acoustic telemetry --- measurement while drilling --- energy harvesting --- pipelines --- underwater networks --- wireless sensor networks --- control algorithm --- waterproof --- coating --- reliability --- flexible micro-devices --- aqueous environments --- seawater --- capacitive pressure sensors --- in-situ pressure sensing --- sensor characterization --- physiological applications --- cardiac output --- aluminum nitride --- resonator --- damping --- quality factor --- electromechanical coupling --- implantable middle ear hearing device --- piezoelectric transducer --- stimulating site --- finite element analysis --- hearing compensation --- adaptive lens --- piezoelectric devices --- fluid-structure interaction --- moving mesh --- thermal expansion --- COMSOL --- petroleum acoustical-logging --- piezoelectric cylindrical-shell transducer --- center-frequency --- experimental-measurement --- piezoelectricity --- visual servo control --- stepping motor --- nano-positioner --- stick-slip --- piezoelectric energy harvester --- cut-in wind speed --- cut-out wind speed --- energy conservation method --- critical stress method --- piezoelectric actuator --- lever mechanism --- analytical model --- stick-slip frication --- nanopositioning stage --- piezoelectric hysteresis --- mark point recognition --- piecewise fitting --- compensation control --- piezo-electromagnetic coupling --- up-conversion --- vibration energy harvester --- multi-directional vibration --- low frequency vibration --- hysteresis compensation --- single-neuron adaptive control --- Hebb learning rules --- supervised learning --- vibration-based energy harvesting --- multimodal structures --- frequency tuning --- nonlinear resonator --- bistability --- magnetostatic force --- robot --- miniature --- traveling wave --- leg --- piezoelectric actuators (PEAs) --- asymmetric hysteresis --- Prandtl–Ishlinskii (PI) model --- polynomial-modified PI (PMPI) model --- feedforward hysteresis compensation --- PIN-PMN-PT --- 1-3 composite --- high frequency --- phased array --- n/a --- Bouc-Wen model --- fluid-structure interaction (FSI) --- Prandtl-Ishlinskii (PI) model


Book
Piezoelectric Transducers : Materials, Devices and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advances in miniaturization of sensors, actuators, and smart systems are receiving substantial industrial attention, and a wide variety of transducers are commercially available or with high potential to impact emerging markets. Substituting existing products based on bulk materials, in fields such as automotive, environment, food, robotics, medicine, biotechnology, communications, and other technologies, with reduced size, lower cost, and higher performance, is now possible, with potential for manufacturing using advanced silicon integrated circuits technology or alternative additive techniques from the mili- to the nano-scale. In this Special Issue, which is focused on piezoelectric transducers, a wide range of topics are covered, including the design, fabrication, characterization, packaging, and system integration or final applications of mili/micro/nano-electro-mechanical systems based transducers.

Keywords

cylindrical composite --- piezoceramic/epoxy composite --- electromechanical characteristics --- transducer --- piezoelectric actuators --- positioning --- trajectory control --- numerical analysis --- trajectory planning --- square piezoelectric vibrator --- resonance --- piezoelectric diaphragm pump --- flexible support --- piezoelectric resonance pump --- piezoelectric ceramics actuators --- hysteresis modeling --- Bouc–Wen model --- P-type IL --- MFA control --- SM control --- evidence theory --- active vibration control --- piezoelectric smart structure --- piezoelectric material --- multiphysics simulation --- finite element method (FEM) --- fluid–structure interaction (FSI) --- micro electromechanical systems (MEMS) --- traveling waves --- piezoelectric --- microactuator --- MEMS --- piezoelectric current sensing device --- two-wire power cord --- cymbal structure --- force amplification effect --- sensitivity --- ciliary bodies touch beam --- piezoelectric tactile feedback devices --- anisotropic vibration tactile model --- human factor experiment --- nondestructive testing --- maturity method --- concrete early-age strength --- SmartRock --- ultrasonic waves --- PZT (piezoelectric) sensors --- structural health monitoring --- AlN thin film --- piezoelectric effect --- resonant accelerometer --- z-axis --- debonding --- non-destructive testing --- electromechanical impedance --- damage detection --- impedance-based technique --- damage depth --- piezoelectric vibration energy harvester --- frequency up-conversion mechanism --- impact --- PZT thick film --- piezoelectric ceramic materials --- Duhem model --- hysteresis model --- class-C power amplifier --- diode expander --- piezoelectric transducers --- point-of-care ultrasound systems --- transverse impact --- frequency up-conversion --- piezoelectric bimorph --- human-limb motion --- hybrid energy harvester --- cascade-connected transducer --- low frequency --- small size --- finite element --- acoustic telemetry --- measurement while drilling --- energy harvesting --- pipelines --- underwater networks --- wireless sensor networks --- control algorithm --- waterproof --- coating --- reliability --- flexible micro-devices --- aqueous environments --- seawater --- capacitive pressure sensors --- in-situ pressure sensing --- sensor characterization --- physiological applications --- cardiac output --- aluminum nitride --- resonator --- damping --- quality factor --- electromechanical coupling --- implantable middle ear hearing device --- piezoelectric transducer --- stimulating site --- finite element analysis --- hearing compensation --- adaptive lens --- piezoelectric devices --- fluid-structure interaction --- moving mesh --- thermal expansion --- COMSOL --- petroleum acoustical-logging --- piezoelectric cylindrical-shell transducer --- center-frequency --- experimental-measurement --- piezoelectricity --- visual servo control --- stepping motor --- nano-positioner --- stick-slip --- piezoelectric energy harvester --- cut-in wind speed --- cut-out wind speed --- energy conservation method --- critical stress method --- piezoelectric actuator --- lever mechanism --- analytical model --- stick-slip frication --- nanopositioning stage --- piezoelectric hysteresis --- mark point recognition --- piecewise fitting --- compensation control --- piezo-electromagnetic coupling --- up-conversion --- vibration energy harvester --- multi-directional vibration --- low frequency vibration --- hysteresis compensation --- single-neuron adaptive control --- Hebb learning rules --- supervised learning --- vibration-based energy harvesting --- multimodal structures --- frequency tuning --- nonlinear resonator --- bistability --- magnetostatic force --- robot --- miniature --- traveling wave --- leg --- piezoelectric actuators (PEAs) --- asymmetric hysteresis --- Prandtl–Ishlinskii (PI) model --- polynomial-modified PI (PMPI) model --- feedforward hysteresis compensation --- PIN-PMN-PT --- 1-3 composite --- high frequency --- phased array --- n/a --- Bouc-Wen model --- fluid-structure interaction (FSI) --- Prandtl-Ishlinskii (PI) model


Book
Piezoelectric Transducers : Materials, Devices and Applications
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Advances in miniaturization of sensors, actuators, and smart systems are receiving substantial industrial attention, and a wide variety of transducers are commercially available or with high potential to impact emerging markets. Substituting existing products based on bulk materials, in fields such as automotive, environment, food, robotics, medicine, biotechnology, communications, and other technologies, with reduced size, lower cost, and higher performance, is now possible, with potential for manufacturing using advanced silicon integrated circuits technology or alternative additive techniques from the mili- to the nano-scale. In this Special Issue, which is focused on piezoelectric transducers, a wide range of topics are covered, including the design, fabrication, characterization, packaging, and system integration or final applications of mili/micro/nano-electro-mechanical systems based transducers.

Keywords

History of engineering & technology --- cylindrical composite --- piezoceramic/epoxy composite --- electromechanical characteristics --- transducer --- piezoelectric actuators --- positioning --- trajectory control --- numerical analysis --- trajectory planning --- square piezoelectric vibrator --- resonance --- piezoelectric diaphragm pump --- flexible support --- piezoelectric resonance pump --- piezoelectric ceramics actuators --- hysteresis modeling --- Bouc-Wen model --- P-type IL --- MFA control --- SM control --- evidence theory --- active vibration control --- piezoelectric smart structure --- piezoelectric material --- multiphysics simulation --- finite element method (FEM) --- fluid-structure interaction (FSI) --- micro electromechanical systems (MEMS) --- traveling waves --- piezoelectric --- microactuator --- MEMS --- piezoelectric current sensing device --- two-wire power cord --- cymbal structure --- force amplification effect --- sensitivity --- ciliary bodies touch beam --- piezoelectric tactile feedback devices --- anisotropic vibration tactile model --- human factor experiment --- nondestructive testing --- maturity method --- concrete early-age strength --- SmartRock --- ultrasonic waves --- PZT (piezoelectric) sensors --- structural health monitoring --- AlN thin film --- piezoelectric effect --- resonant accelerometer --- z-axis --- debonding --- non-destructive testing --- electromechanical impedance --- damage detection --- impedance-based technique --- damage depth --- piezoelectric vibration energy harvester --- frequency up-conversion mechanism --- impact --- PZT thick film --- piezoelectric ceramic materials --- Duhem model --- hysteresis model --- class-C power amplifier --- diode expander --- piezoelectric transducers --- point-of-care ultrasound systems --- transverse impact --- frequency up-conversion --- piezoelectric bimorph --- human-limb motion --- hybrid energy harvester --- cascade-connected transducer --- low frequency --- small size --- finite element --- acoustic telemetry --- measurement while drilling --- energy harvesting --- pipelines --- underwater networks --- wireless sensor networks --- control algorithm --- waterproof --- coating --- reliability --- flexible micro-devices --- aqueous environments --- seawater --- capacitive pressure sensors --- in-situ pressure sensing --- sensor characterization --- physiological applications --- cardiac output --- aluminum nitride --- resonator --- damping --- quality factor --- electromechanical coupling --- implantable middle ear hearing device --- piezoelectric transducer --- stimulating site --- finite element analysis --- hearing compensation --- adaptive lens --- piezoelectric devices --- fluid-structure interaction --- moving mesh --- thermal expansion --- COMSOL --- petroleum acoustical-logging --- piezoelectric cylindrical-shell transducer --- center-frequency --- experimental-measurement --- piezoelectricity --- visual servo control --- stepping motor --- nano-positioner --- stick-slip --- piezoelectric energy harvester --- cut-in wind speed --- cut-out wind speed --- energy conservation method --- critical stress method --- piezoelectric actuator --- lever mechanism --- analytical model --- stick-slip frication --- nanopositioning stage --- piezoelectric hysteresis --- mark point recognition --- piecewise fitting --- compensation control --- piezo-electromagnetic coupling --- up-conversion --- vibration energy harvester --- multi-directional vibration --- low frequency vibration --- hysteresis compensation --- single-neuron adaptive control --- Hebb learning rules --- supervised learning --- vibration-based energy harvesting --- multimodal structures --- frequency tuning --- nonlinear resonator --- bistability --- magnetostatic force --- robot --- miniature --- traveling wave --- leg --- piezoelectric actuators (PEAs) --- asymmetric hysteresis --- Prandtl-Ishlinskii (PI) model --- polynomial-modified PI (PMPI) model --- feedforward hysteresis compensation --- PIN-PMN-PT --- 1-3 composite --- high frequency --- phased array --- cylindrical composite --- piezoceramic/epoxy composite --- electromechanical characteristics --- transducer --- piezoelectric actuators --- positioning --- trajectory control --- numerical analysis --- trajectory planning --- square piezoelectric vibrator --- resonance --- piezoelectric diaphragm pump --- flexible support --- piezoelectric resonance pump --- piezoelectric ceramics actuators --- hysteresis modeling --- Bouc-Wen model --- P-type IL --- MFA control --- SM control --- evidence theory --- active vibration control --- piezoelectric smart structure --- piezoelectric material --- multiphysics simulation --- finite element method (FEM) --- fluid-structure interaction (FSI) --- micro electromechanical systems (MEMS) --- traveling waves --- piezoelectric --- microactuator --- MEMS --- piezoelectric current sensing device --- two-wire power cord --- cymbal structure --- force amplification effect --- sensitivity --- ciliary bodies touch beam --- piezoelectric tactile feedback devices --- anisotropic vibration tactile model --- human factor experiment --- nondestructive testing --- maturity method --- concrete early-age strength --- SmartRock --- ultrasonic waves --- PZT (piezoelectric) sensors --- structural health monitoring --- AlN thin film --- piezoelectric effect --- resonant accelerometer --- z-axis --- debonding --- non-destructive testing --- electromechanical impedance --- damage detection --- impedance-based technique --- damage depth --- piezoelectric vibration energy harvester --- frequency up-conversion mechanism --- impact --- PZT thick film --- piezoelectric ceramic materials --- Duhem model --- hysteresis model --- class-C power amplifier --- diode expander --- piezoelectric transducers --- point-of-care ultrasound systems --- transverse impact --- frequency up-conversion --- piezoelectric bimorph --- human-limb motion --- hybrid energy harvester --- cascade-connected transducer --- low frequency --- small size --- finite element --- acoustic telemetry --- measurement while drilling --- energy harvesting --- pipelines --- underwater networks --- wireless sensor networks --- control algorithm --- waterproof --- coating --- reliability --- flexible micro-devices --- aqueous environments --- seawater --- capacitive pressure sensors --- in-situ pressure sensing --- sensor characterization --- physiological applications --- cardiac output --- aluminum nitride --- resonator --- damping --- quality factor --- electromechanical coupling --- implantable middle ear hearing device --- piezoelectric transducer --- stimulating site --- finite element analysis --- hearing compensation --- adaptive lens --- piezoelectric devices --- fluid-structure interaction --- moving mesh --- thermal expansion --- COMSOL --- petroleum acoustical-logging --- piezoelectric cylindrical-shell transducer --- center-frequency --- experimental-measurement --- piezoelectricity --- visual servo control --- stepping motor --- nano-positioner --- stick-slip --- piezoelectric energy harvester --- cut-in wind speed --- cut-out wind speed --- energy conservation method --- critical stress method --- piezoelectric actuator --- lever mechanism --- analytical model --- stick-slip frication --- nanopositioning stage --- piezoelectric hysteresis --- mark point recognition --- piecewise fitting --- compensation control --- piezo-electromagnetic coupling --- up-conversion --- vibration energy harvester --- multi-directional vibration --- low frequency vibration --- hysteresis compensation --- single-neuron adaptive control --- Hebb learning rules --- supervised learning --- vibration-based energy harvesting --- multimodal structures --- frequency tuning --- nonlinear resonator --- bistability --- magnetostatic force --- robot --- miniature --- traveling wave --- leg --- piezoelectric actuators (PEAs) --- asymmetric hysteresis --- Prandtl-Ishlinskii (PI) model --- polynomial-modified PI (PMPI) model --- feedforward hysteresis compensation --- PIN-PMN-PT --- 1-3 composite --- high frequency --- phased array

Listing 1 - 8 of 8
Sort by