Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

FARO (1)

UGent (1)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2019 (1)

2009 (1)

Listing 1 - 2 of 2
Sort by
Wave Scattering by Time-Dependent Perturbations
Author:
ISBN: 1282158783 9786612158780 1400828163 9781400828166 9781282158788 9780691113401 0691113408 6612158786 Year: 2009 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book offers the first comprehensive introduction to wave scattering in nonstationary materials. G. F. Roach's aim is to provide an accessible, self-contained resource for newcomers to this important field of research that has applications across a broad range of areas, including radar, sonar, diagnostics in engineering and manufacturing, geophysical prospecting, and ultrasonic medicine such as sonograms. New methods in recent years have been developed to assess the structure and properties of materials and surfaces. When light, sound, or some other wave energy is directed at the material in question, "imperfections" in the resulting echo can reveal a tremendous amount of valuable diagnostic information. The mathematics behind such analysis is sophisticated and complex. However, while problems involving stationary materials are quite well understood, there is still much to learn about those in which the material is moving or changes over time. These so-called non-autonomous problems are the subject of this fascinating book. Roach develops practical strategies, techniques, and solutions for mathematicians and applied scientists working in or seeking entry into the field of modern scattering theory and its applications. Wave Scattering by Time-Dependent Perturbations is destined to become a classic in this rapidly evolving area of inquiry.

Keywords

Waves --- Scattering (Physics) --- Perturbation (Mathematics) --- Perturbation equations --- Perturbation theory --- Approximation theory --- Dynamics --- Functional analysis --- Mathematical physics --- Atomic scattering --- Atoms --- Nuclear scattering --- Particles (Nuclear physics) --- Scattering of particles --- Wave scattering --- Collisions (Nuclear physics) --- Particles --- Collisions (Physics) --- Cycles --- Hydrodynamics --- Benjamin-Feir instability --- Mathematics. --- Scattering --- Acoustic wave equation. --- Acoustic wave. --- Affine space. --- Angular frequency. --- Approximation. --- Asymptotic analysis. --- Asymptotic expansion. --- Banach space. --- Basis (linear algebra). --- Bessel's inequality. --- Boundary value problem. --- Bounded operator. --- C0-semigroup. --- Calculation. --- Characteristic function (probability theory). --- Classical physics. --- Codimension. --- Coefficient. --- Continuous function (set theory). --- Continuous function. --- Continuous spectrum. --- Convolution. --- Differentiable function. --- Differential equation. --- Dimension (vector space). --- Dimension. --- Dimensional analysis. --- Dirac delta function. --- Dirichlet problem. --- Distribution (mathematics). --- Duhamel's principle. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Electromagnetism. --- Equation. --- Existential quantification. --- Exponential function. --- Floquet theory. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fredholm integral equation. --- Frequency domain. --- Helmholtz equation. --- Hilbert space. --- Initial value problem. --- Integral equation. --- Integral transform. --- Integration by parts. --- Inverse problem. --- Inverse scattering problem. --- Lebesgue measure. --- Linear differential equation. --- Linear map. --- Linear space (geometry). --- Locally integrable function. --- Longitudinal wave. --- Mathematical analysis. --- Mathematical physics. --- Metric space. --- Operator theory. --- Ordinary differential equation. --- Orthonormal basis. --- Orthonormality. --- Parseval's theorem. --- Partial derivative. --- Partial differential equation. --- Phase velocity. --- Plane wave. --- Projection (linear algebra). --- Propagator. --- Quantity. --- Quantum mechanics. --- Reflection coefficient. --- Requirement. --- Riesz representation theorem. --- Scalar (physics). --- Scattering theory. --- Scattering. --- Scientific notation. --- Self-adjoint operator. --- Self-adjoint. --- Series expansion. --- Sine wave. --- Spectral method. --- Spectral theorem. --- Spectral theory. --- Square-integrable function. --- Subset. --- Theorem. --- Theory. --- Time domain. --- Time evolution. --- Unbounded operator. --- Unitarity (physics). --- Vector space. --- Volterra integral equation. --- Wave function. --- Wave packet. --- Wave propagation.


Book
Current Trends in Symmetric Polynomials with their Applications
Author:
ISBN: 303921621X 3039216201 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue presents research papers on various topics within many different branches of mathematics, applied mathematics, and mathematical physics. Each paper presents mathematical theories, methods, and their application based on current and recently developed symmetric polynomials. Also, each one aims to provide the full understanding of current research problems, theories, and applications on the chosen topics and includes the most recent advances made in the area of symmetric functions and polynomials.

Keywords

generalized Laguerre --- central complete Bell numbers --- rational polynomials --- Changhee polynomials of type two --- Euler polynomials --- generalized Laguerre polynomials --- Hermite --- conjecture --- Legendre --- the degenerate gamma function --- trivariate Lucas polynomials --- perfectly matched layer --- third-order character --- Euler numbers --- two variable q-Berstein operator --- entropy production --- hypergeometric function --- q-Bernoulli numbers --- q-Bernoulli polynomials --- symmetry group --- Bernoulli polynomials --- Fibonacci polynomials --- central incomplete Bell polynomials --- Chebyshev polynomials --- convolution sums --- Lucas polynomials --- Jacobi --- the modified degenerate Laplace transform --- q-Volkenborn integral on ?p --- and fourth kinds --- two variable q-Berstein polynomial --- the modified degenerate gamma function --- two variable q-Bernstein operators --- reduction method --- identity --- elementary and combinatorial methods --- generalized Bernoulli polynomials and numbers attached to a Dirichlet character ? --- explicit relations --- recursive sequence --- Fubini polynomials --- p-adic integral on ?p --- generating functions --- q-Euler number --- acoustic wave equation --- congruence --- trivariate Fibonacci polynomials --- stochastic thermodynamics --- fermionic p-adic integrals --- Laguerre polynomials --- fluctuation theorem --- Bernoulli numbers and polynomials --- w-torsion Fubini polynomials --- non-equilibrium free energy --- hypergeometric functions 1F1 and 2F1 --- recursive formula --- Chebyshev polynomials of the first --- second --- central complete Bell polynomials --- Apostol-type Frobenius–Euler polynomials --- sums of finite products --- q-Euler polynomial --- symmetric identities --- stability --- fermionic p-adic q-integral on ?p --- Gegenbauer polynomials --- continued fraction --- thermodynamics of information --- well-posedness --- fermionic p-adic integral on ?p --- catalan numbers --- classical Gauss sums --- three-variable Hermite polynomials --- q-Changhee polynomials --- Catalan numbers --- two variable q-Bernstein polynomials --- q-Euler polynomials --- analytic method --- representation --- mutual information --- Fibonacci --- Legendre polynomials --- Gegenbauer --- generalized Bernoulli polynomials and numbers of arbitrary complex order --- Lucas --- elementary method --- new sequence --- third --- the degenerate Laplace transform --- computational formula --- operational connection --- sums of finite products of Chebyshev polynomials of the third and fourth kinds --- Changhee polynomials --- linear form in logarithms

Listing 1 - 2 of 2
Sort by