Narrow your search

Library

FARO (6)

KU Leuven (6)

LUCA School of Arts (6)

Odisee (6)

Thomas More Kempen (6)

Thomas More Mechelen (6)

UCLL (6)

ULiège (6)

VIVES (6)

Vlaams Parlement (6)

More...

Resource type

book (13)


Language

English (13)


Year
From To Submit

2022 (1)

2021 (9)

2020 (2)

2019 (1)

Listing 1 - 10 of 13 << page
of 2
>>
Sort by

Book
UAV Photogrammetry and Remote Sensing
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concept of remote sensing as a way of capturing information from an object without making contact with it has, until recently, been exclusively focused on the use of Earth observation satellites.The emergence of unmanned aerial vehicles (UAV) with Global Navigation Satellite System (GNSS) controlled navigation and sensor-carrying capabilities has increased the number of publications related to new remote sensing from much closer distances. Previous knowledge about the behavior of the Earth's surface under the incidence different wavelengths of energy has been successfully applied to a large amount of data recorded from UAVs, thereby increasing the special and temporal resolution of the products obtained.More specifically, the ability of UAVs to be positioned in the air at pre-programmed coordinate points; to track flight paths; and in any case, to record the coordinates of the sensor position at the time of the shot and at the pitch, yaw, and roll angles have opened an interesting field of applications for low-altitude aerial photogrammetry, known as UAV photogrammetry. In addition, photogrammetric data processing has been improved thanks to the combination of new algorithms, e.g., structure from motion (SfM), which solves the collinearity equations without the need for any control point, producing a cloud of points referenced to an arbitrary coordinate system and a full camera calibration, and the multi-view stereopsis (MVS) algorithm, which applies an expanding procedure of sparse set of matched keypoints in order to obtain a dense point cloud. The set of technical advances described above allows for geometric modeling of terrain surfaces with high accuracy, minimizing the need for topographic campaigns for georeferencing of such products.This Special Issue aims to compile some applications realized thanks to the synergies established between new remote sensing from close distances and UAV photogrammetry.

Keywords

Technology: general issues --- unmanned aerial vehicle --- urban LULC --- GEOBIA --- multiscale classification --- unmanned aircraft system (UAS) --- deep learning --- super-resolution (SR) --- convolutional neural network (CNN) --- generative adversarial network (GAN) --- structure-from-motion --- photogrammetry --- remote sensing --- UAV --- 3D-model --- surveying --- vertical wall --- snow --- remotely piloted aircraft systems --- structure from motion --- lidar --- forests --- orthophotography --- construction planning --- sustainable construction --- urbanism --- BIM --- building maintenance --- unmanned aerial vehicle (UAV) --- structure-from-motion (SfM) --- ground control points (GCP) --- accuracy assessment --- point clouds --- corridor mapping --- UAV photogrammetry --- terrain modeling --- vegetation removal --- unmanned aerial vehicles --- power lines --- image-based reconstruction --- 3D reconstruction --- unmanned aerial systems --- time series --- accuracy --- reproducibility --- orthomosaic --- validation --- drone --- GNSS RTK --- precision --- elevation --- multispectral imaging --- vegetation indices --- nutritional analysis --- correlation --- optimal harvest time --- UAV images --- monoscopic mapping --- stereoscopic plotting --- image overlap --- optimal image selection --- unmanned aerial vehicle --- urban LULC --- GEOBIA --- multiscale classification --- unmanned aircraft system (UAS) --- deep learning --- super-resolution (SR) --- convolutional neural network (CNN) --- generative adversarial network (GAN) --- structure-from-motion --- photogrammetry --- remote sensing --- UAV --- 3D-model --- surveying --- vertical wall --- snow --- remotely piloted aircraft systems --- structure from motion --- lidar --- forests --- orthophotography --- construction planning --- sustainable construction --- urbanism --- BIM --- building maintenance --- unmanned aerial vehicle (UAV) --- structure-from-motion (SfM) --- ground control points (GCP) --- accuracy assessment --- point clouds --- corridor mapping --- UAV photogrammetry --- terrain modeling --- vegetation removal --- unmanned aerial vehicles --- power lines --- image-based reconstruction --- 3D reconstruction --- unmanned aerial systems --- time series --- accuracy --- reproducibility --- orthomosaic --- validation --- drone --- GNSS RTK --- precision --- elevation --- multispectral imaging --- vegetation indices --- nutritional analysis --- correlation --- optimal harvest time --- UAV images --- monoscopic mapping --- stereoscopic plotting --- image overlap --- optimal image selection


Book
Remote Sensing in Mangroves
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the world

Keywords

Technology: general issues --- Landsat --- estuary --- protected area --- land use --- land cover --- change detection --- time series --- Great Barrier Reef --- Sentinel-2 --- ALOS-2 PALSAR-2 --- mangrove --- above-ground biomass --- extreme gradient boosting --- Can Gio biosphere reserve --- Vietnam --- LiDAR --- random forest --- GLAS --- aboveground biomass --- mangrove plantation --- aboveground biomass estimation --- optical images --- SAR --- DSM --- vegetation index --- color --- RGB --- accuracy assessment --- transgression --- mangrove development --- machine learning --- mangrove condition --- classification --- remote sensing --- ecosystem --- upscaling --- Worldview-2 --- Niger Delta Region --- mangroves --- land cover dynamics --- intensity analysis --- fragmentation --- spectral-temporal metrics --- land degradation --- ALOS PALSAR-2 --- JERS-1 --- GLCM --- Markov chain --- cellular automata --- data fusion --- forest monitoring --- Google Earth Engine --- mangrove forests --- multi-temporal analysis --- satellite earth observation --- time series analysis --- GEEMMM --- google earth engine --- Myanmar --- cloud computing --- digital earth --- GAMs --- Generalized Additive Models --- EVI --- phenology --- Landsat --- estuary --- protected area --- land use --- land cover --- change detection --- time series --- Great Barrier Reef --- Sentinel-2 --- ALOS-2 PALSAR-2 --- mangrove --- above-ground biomass --- extreme gradient boosting --- Can Gio biosphere reserve --- Vietnam --- LiDAR --- random forest --- GLAS --- aboveground biomass --- mangrove plantation --- aboveground biomass estimation --- optical images --- SAR --- DSM --- vegetation index --- color --- RGB --- accuracy assessment --- transgression --- mangrove development --- machine learning --- mangrove condition --- classification --- remote sensing --- ecosystem --- upscaling --- Worldview-2 --- Niger Delta Region --- mangroves --- land cover dynamics --- intensity analysis --- fragmentation --- spectral-temporal metrics --- land degradation --- ALOS PALSAR-2 --- JERS-1 --- GLCM --- Markov chain --- cellular automata --- data fusion --- forest monitoring --- Google Earth Engine --- mangrove forests --- multi-temporal analysis --- satellite earth observation --- time series analysis --- GEEMMM --- google earth engine --- Myanmar --- cloud computing --- digital earth --- GAMs --- Generalized Additive Models --- EVI --- phenology


Book
ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications
Authors: ---
ISBN: 3036561056 3036561064 Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research.


Book
Remote Sensing in Mangroves
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the world


Book
UAV Photogrammetry and Remote Sensing
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concept of remote sensing as a way of capturing information from an object without making contact with it has, until recently, been exclusively focused on the use of Earth observation satellites.The emergence of unmanned aerial vehicles (UAV) with Global Navigation Satellite System (GNSS) controlled navigation and sensor-carrying capabilities has increased the number of publications related to new remote sensing from much closer distances. Previous knowledge about the behavior of the Earth's surface under the incidence different wavelengths of energy has been successfully applied to a large amount of data recorded from UAVs, thereby increasing the special and temporal resolution of the products obtained.More specifically, the ability of UAVs to be positioned in the air at pre-programmed coordinate points; to track flight paths; and in any case, to record the coordinates of the sensor position at the time of the shot and at the pitch, yaw, and roll angles have opened an interesting field of applications for low-altitude aerial photogrammetry, known as UAV photogrammetry. In addition, photogrammetric data processing has been improved thanks to the combination of new algorithms, e.g., structure from motion (SfM), which solves the collinearity equations without the need for any control point, producing a cloud of points referenced to an arbitrary coordinate system and a full camera calibration, and the multi-view stereopsis (MVS) algorithm, which applies an expanding procedure of sparse set of matched keypoints in order to obtain a dense point cloud. The set of technical advances described above allows for geometric modeling of terrain surfaces with high accuracy, minimizing the need for topographic campaigns for georeferencing of such products.This Special Issue aims to compile some applications realized thanks to the synergies established between new remote sensing from close distances and UAV photogrammetry.


Book
Remote Sensing in Mangroves
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book highlights recent advancements in the mapping and monitoring of mangrove forests using earth observation satellite data. New and historical satellite data and aerial photographs have been used to map the extent, change and bio-physical parameters, such as phenology and biomass. Research was conducted in different parts of the world. Knowledge and understanding gained from this book can be used for the sustainable management of mangrove forests of the world


Book
UAV Photogrammetry and Remote Sensing
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The concept of remote sensing as a way of capturing information from an object without making contact with it has, until recently, been exclusively focused on the use of Earth observation satellites.The emergence of unmanned aerial vehicles (UAV) with Global Navigation Satellite System (GNSS) controlled navigation and sensor-carrying capabilities has increased the number of publications related to new remote sensing from much closer distances. Previous knowledge about the behavior of the Earth's surface under the incidence different wavelengths of energy has been successfully applied to a large amount of data recorded from UAVs, thereby increasing the special and temporal resolution of the products obtained.More specifically, the ability of UAVs to be positioned in the air at pre-programmed coordinate points; to track flight paths; and in any case, to record the coordinates of the sensor position at the time of the shot and at the pitch, yaw, and roll angles have opened an interesting field of applications for low-altitude aerial photogrammetry, known as UAV photogrammetry. In addition, photogrammetric data processing has been improved thanks to the combination of new algorithms, e.g., structure from motion (SfM), which solves the collinearity equations without the need for any control point, producing a cloud of points referenced to an arbitrary coordinate system and a full camera calibration, and the multi-view stereopsis (MVS) algorithm, which applies an expanding procedure of sparse set of matched keypoints in order to obtain a dense point cloud. The set of technical advances described above allows for geometric modeling of terrain surfaces with high accuracy, minimizing the need for topographic campaigns for georeferencing of such products.This Special Issue aims to compile some applications realized thanks to the synergies established between new remote sensing from close distances and UAV photogrammetry.


Book
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in the last few years for forestry applications that benefit from the added value of flexibility, low cost, reliability, autonomy, and capability of timely provision of high-resolution data. The main adopted image-based technologies are RGB, multispectral, and thermal infrared. LiDAR sensors are becoming commonly used to improve the estimation of relevant plant traits. In comparison with other permanent ecosystems, forests are particularly affected by climatic changes due to the longevity of the trees, and the primary objective is the conservation and protection of forests. Nevertheless, forestry and agriculture involve the cultivation of renewable raw materials, with the difference that forestry is less tied to economic aspects and this is reflected by the delay in using new monitoring technologies. The main forestry applications are aimed toward inventory of resources, map diseases, species classification, fire monitoring, and spatial gap estimation. This Special Issue focuses on new technologies (UAV and sensors) and innovative data elaboration methodologies (object recognition and machine vision) for applications in forestry.


Book
Forestry Applications of Unmanned Aerial Vehicles (UAVs) 2019
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Unmanned aerial vehicles (UAVs) are new platforms that have been increasingly used in the last few years for forestry applications that benefit from the added value of flexibility, low cost, reliability, autonomy, and capability of timely provision of high-resolution data. The main adopted image-based technologies are RGB, multispectral, and thermal infrared. LiDAR sensors are becoming commonly used to improve the estimation of relevant plant traits. In comparison with other permanent ecosystems, forests are particularly affected by climatic changes due to the longevity of the trees, and the primary objective is the conservation and protection of forests. Nevertheless, forestry and agriculture involve the cultivation of renewable raw materials, with the difference that forestry is less tied to economic aspects and this is reflected by the delay in using new monitoring technologies. The main forestry applications are aimed toward inventory of resources, map diseases, species classification, fire monitoring, and spatial gap estimation. This Special Issue focuses on new technologies (UAV and sensors) and innovative data elaboration methodologies (object recognition and machine vision) for applications in forestry.

Keywords

Research & information: general --- Biology, life sciences --- Forestry & related industries --- unmanned aerial vehicles --- seedling detection --- forest regeneration --- reforestation --- establishment survey --- machine learning --- multispectral classification --- UAV photogrammetry --- forest modeling --- ancient trees measurement --- tree age prediction --- Mauritia flexuosa --- semantic segmentation --- end-to-end learning --- convolutional neural network --- forest inventory --- Unmanned Aerial Systems (UAS) --- structure from motion (SfM) --- Unmanned Aerial Vehicles (UAV) --- Photogrammetry --- Thematic Mapping --- Accuracy Assessment --- Reference Data --- Forest Sampling --- Remote Sensing --- Robinia pseudoacacia L. --- reproduction --- spreading --- short rotation coppice --- unmanned aerial system (UAS) --- object-based image analysis (OBIA) --- convolutional neural network (CNN) --- juniper woodlands --- ecohydrology --- remote sensing --- unmanned aerial systems --- central Oregon --- rangelands --- seedling stand inventorying --- photogrammetric point clouds --- hyperspectral imagery --- leaf-off --- leaf-on --- UAV --- multispectral image --- forest fire --- burn severity --- classification --- precision agriculture --- biomass evaluation --- image processing --- Castanea sativa --- unmanned aerial vehicles (UAV) --- precision forestry --- forestry applications --- RGB imagery --- unmanned aerial vehicles --- seedling detection --- forest regeneration --- reforestation --- establishment survey --- machine learning --- multispectral classification --- UAV photogrammetry --- forest modeling --- ancient trees measurement --- tree age prediction --- Mauritia flexuosa --- semantic segmentation --- end-to-end learning --- convolutional neural network --- forest inventory --- Unmanned Aerial Systems (UAS) --- structure from motion (SfM) --- Unmanned Aerial Vehicles (UAV) --- Photogrammetry --- Thematic Mapping --- Accuracy Assessment --- Reference Data --- Forest Sampling --- Remote Sensing --- Robinia pseudoacacia L. --- reproduction --- spreading --- short rotation coppice --- unmanned aerial system (UAS) --- object-based image analysis (OBIA) --- convolutional neural network (CNN) --- juniper woodlands --- ecohydrology --- remote sensing --- unmanned aerial systems --- central Oregon --- rangelands --- seedling stand inventorying --- photogrammetric point clouds --- hyperspectral imagery --- leaf-off --- leaf-on --- UAV --- multispectral image --- forest fire --- burn severity --- classification --- precision agriculture --- biomass evaluation --- image processing --- Castanea sativa --- unmanned aerial vehicles (UAV) --- precision forestry --- forestry applications --- RGB imagery


Book
Operationalization of Remote Sensing Solutions for Sustainable Forest Management
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue “Operationalization of Remote Sensing Solutions for Sustainable Forest Management”. The studies come from three continents and cover multiple remote sensing systems (including terrestrial mobile laser scanning, unmanned aerial vehicles, airborne laser scanning, and satellite data acquisition) and a diversity of data processing algorithms, with a focus on machine learning approaches. The focus of the studies ranges from identification and characterization of individual trees to deriving national- or even continental-level forest attributes and maps. There are studies carefully describing exercises on the case study level, and there are also studies introducing new methodologies for transdisciplinary remote sensing applications. Even though most of the authors look forward to continuing their research, nearly all studies introduced are ready for operational use or have already been implemented in practical forestry.

Keywords

Research & information: general --- forest road inventory --- total station --- global navigation satellite system --- point cloud --- precision density --- positional accuracy --- efficiency --- mangrove sustainability --- deforestation depletion --- anthropogenic --- natural water balance --- Southeast Asia --- Phoracantha spp. --- unmanned aerial vehicle (UAV) --- multispectral imagery --- vegetation index --- thresholding analysis --- Large Scale Mean-Shift Segmentation (LSMS) --- Random Forest (RF) --- forest mask --- validation --- probability sampling --- remote sensing --- earth observations --- forestry --- accuracy assessment --- forest classification --- forested catchment --- hydrological modeling --- SWAT model --- DEM --- airborne laser scanning --- deep learning --- Landsat --- national forest inventory --- stand volume --- bark beetle --- Ips typographus L. --- pest --- change detection --- forest damage --- spruce --- Sentinel-2 --- damage mapping --- multi-temporal regression --- mangrove --- replanting --- restoration --- analytic hierarchy process --- UAV --- DJI drone --- machine learning --- forest canopy --- canopy gaps --- canopy openings percentage --- satellite indices --- Elastic Net --- beech-fir forests --- pixel-based supervised classification --- random forest --- support vector machine --- gray level cooccurrence matrix (GLCM) --- principal component analysis (PCA) --- WorldView-3 --- wildfires --- MaxENT --- risk modeling --- GIS --- multi-scale analysis --- Yakutia --- Artic --- Siberia --- phenology modelling --- forest disturbance --- forest monitoring --- bark beetle infestation --- forest management --- time series analysis --- satellite imagery --- landsat time series --- growing stock volume --- forest inventory --- harmonic regression --- forest road inventory --- total station --- global navigation satellite system --- point cloud --- precision density --- positional accuracy --- efficiency --- mangrove sustainability --- deforestation depletion --- anthropogenic --- natural water balance --- Southeast Asia --- Phoracantha spp. --- unmanned aerial vehicle (UAV) --- multispectral imagery --- vegetation index --- thresholding analysis --- Large Scale Mean-Shift Segmentation (LSMS) --- Random Forest (RF) --- forest mask --- validation --- probability sampling --- remote sensing --- earth observations --- forestry --- accuracy assessment --- forest classification --- forested catchment --- hydrological modeling --- SWAT model --- DEM --- airborne laser scanning --- deep learning --- Landsat --- national forest inventory --- stand volume --- bark beetle --- Ips typographus L. --- pest --- change detection --- forest damage --- spruce --- Sentinel-2 --- damage mapping --- multi-temporal regression --- mangrove --- replanting --- restoration --- analytic hierarchy process --- UAV --- DJI drone --- machine learning --- forest canopy --- canopy gaps --- canopy openings percentage --- satellite indices --- Elastic Net --- beech-fir forests --- pixel-based supervised classification --- random forest --- support vector machine --- gray level cooccurrence matrix (GLCM) --- principal component analysis (PCA) --- WorldView-3 --- wildfires --- MaxENT --- risk modeling --- GIS --- multi-scale analysis --- Yakutia --- Artic --- Siberia --- phenology modelling --- forest disturbance --- forest monitoring --- bark beetle infestation --- forest management --- time series analysis --- satellite imagery --- landsat time series --- growing stock volume --- forest inventory --- harmonic regression

Listing 1 - 10 of 13 << page
of 2
>>
Sort by