Listing 1 - 10 of 125 | << page >> |
Sort by
|
Choose an application
Les oxydes transparents sont des matériaux présentant des propriétés opto-électroniques intéressantes pour de nombreuses applications technologiques. La majorité de ces semi-conducteurs présentent des propriétés électriques associées à un dopage de type-n. Or, le développement de matériaux de type-p présentant des propriétés physiques aussi intéressantes que leurs homologues de type-n est, encore aujourd'hui, un défi pour la communauté scientifique. Dans ce travail, nous avons développé une méthode originale de fabrication de films minces de ZnO dopé. Pour ce faire, nous avons incorporé des nanofils d’argent (AgNWs) entre deux films minces de ZnO déposés par pulvérisation cathodique. Les propriétés physiques de ces composites ont été étudiées suivant la quantité de nanofils ainsi qu’en fonction de la température de recuit de l’échantillon post-synthèse. Le but de cette étude est de mettre en évidence l’impact de l’ajout et de la diffusion des nanofils d’argent dans le ZnO sur les propriétés électriques et optiques de ce composite tout en optimisant la méthode de synthèse des échantillons. Sur base de cette méthodologie, nous avons mis en évidence trois gammes de température de recuit. Jusqu'à 300°C, nous observons une diminution de la résistance électrique suivie d'une augmentation notable à 350°C, toute deux identifiées à l’évolution des propriétés physiques du ZnO. Ensuite, pour des températures de plus de 450°C, nous observons une diminution de la résistivité grâce aux nanofils d'argent. Une valeur optimale pour la densité de nanofils a été déterminée aux alentours de 6.4 µg/cm² pour une température de recuit de 40°C associée à une résistivité de 4.31 Ωcm et une transmittance optique de 73.3% dans le domaine du visible.
Semi-conducteurs --- ZnO --- AgNW --- Dopage --- ZnO:Ag --- Pulvérisation cathodique --- Revêtement centrifuge --- Transmittance --- Résistivité --- Semiconductors --- RF magnetron sputtering --- Spin coating --- transparent conducting oxide --- Physique, chimie, mathématiques & sciences de la terre > Physique
Choose an application
Nanostructured zinc oxide materials are capturing a great deal of interest thanks to their outstanding and multifunctional properties, enabling broad series of intervention in the field of nanomedicine. ZnO can be easily prepared in a broad variety of shapes and shows anticancer and antimicrobial properties that are of interest for tissue engineering, controlled delivery of therapeutics, and even theranostics. This book is thus dedicated to the most recent advances in the field, presented as a collection of research papers and reviews. It spans from the synthesis and characterization of ZnO nanomaterials to their applications in the nanomedicine field, ranging from anticancer nanotherapeutics to dental implants and antibacterial agents.
Technology: general issues --- ZnO nanoparticles --- Quantum dots --- theranostic --- drug delivery --- anti-tumour --- diabetes treatment --- anti-inflammation --- antibacterial --- antifungal --- wound healing --- denture stomatitis --- polymethylmethacrylate --- zinc oxide nanoparticles --- Candida albicans --- mesoporous glasses --- ZnO-additions --- osteostatin loading --- osteosteoblast cell cultures --- osteogenic effect --- zinc oxide --- microwave solvothermal synthesis --- hydrodynamic size --- surface chemistry --- nanocrystals --- cell cytotoxicity --- Supercritical CO2 --- ibuprofen --- NsZnO --- antimicrobial activity --- ZnO nanoparticles --- Quantum dots --- theranostic --- drug delivery --- anti-tumour --- diabetes treatment --- anti-inflammation --- antibacterial --- antifungal --- wound healing --- denture stomatitis --- polymethylmethacrylate --- zinc oxide nanoparticles --- Candida albicans --- mesoporous glasses --- ZnO-additions --- osteostatin loading --- osteosteoblast cell cultures --- osteogenic effect --- zinc oxide --- microwave solvothermal synthesis --- hydrodynamic size --- surface chemistry --- nanocrystals --- cell cytotoxicity --- Supercritical CO2 --- ibuprofen --- NsZnO --- antimicrobial activity
Choose an application
Nanostructured zinc oxide materials are capturing a great deal of interest thanks to their outstanding and multifunctional properties, enabling broad series of intervention in the field of nanomedicine. ZnO can be easily prepared in a broad variety of shapes and shows anticancer and antimicrobial properties that are of interest for tissue engineering, controlled delivery of therapeutics, and even theranostics. This book is thus dedicated to the most recent advances in the field, presented as a collection of research papers and reviews. It spans from the synthesis and characterization of ZnO nanomaterials to their applications in the nanomedicine field, ranging from anticancer nanotherapeutics to dental implants and antibacterial agents.
Technology: general issues --- ZnO nanoparticles --- Quantum dots --- theranostic --- drug delivery --- anti-tumour --- diabetes treatment --- anti-inflammation --- antibacterial --- antifungal --- wound healing --- denture stomatitis --- polymethylmethacrylate --- zinc oxide nanoparticles --- Candida albicans --- mesoporous glasses --- ZnO-additions --- osteostatin loading --- osteosteoblast cell cultures --- osteogenic effect --- zinc oxide --- microwave solvothermal synthesis --- hydrodynamic size --- surface chemistry --- nanocrystals --- cell cytotoxicity --- Supercritical CO2 --- ibuprofen --- NsZnO --- antimicrobial activity --- n/a
Choose an application
Nanostructured zinc oxide materials are capturing a great deal of interest thanks to their outstanding and multifunctional properties, enabling broad series of intervention in the field of nanomedicine. ZnO can be easily prepared in a broad variety of shapes and shows anticancer and antimicrobial properties that are of interest for tissue engineering, controlled delivery of therapeutics, and even theranostics. This book is thus dedicated to the most recent advances in the field, presented as a collection of research papers and reviews. It spans from the synthesis and characterization of ZnO nanomaterials to their applications in the nanomedicine field, ranging from anticancer nanotherapeutics to dental implants and antibacterial agents.
ZnO nanoparticles --- Quantum dots --- theranostic --- drug delivery --- anti-tumour --- diabetes treatment --- anti-inflammation --- antibacterial --- antifungal --- wound healing --- denture stomatitis --- polymethylmethacrylate --- zinc oxide nanoparticles --- Candida albicans --- mesoporous glasses --- ZnO-additions --- osteostatin loading --- osteosteoblast cell cultures --- osteogenic effect --- zinc oxide --- microwave solvothermal synthesis --- hydrodynamic size --- surface chemistry --- nanocrystals --- cell cytotoxicity --- Supercritical CO2 --- ibuprofen --- NsZnO --- antimicrobial activity --- n/a
Choose an application
Clay minerals are inexpensive and available materials with a wide range of applications (adsorbent, ion exchanger, support, catalyst, paper coating, ceramic, and pharmaceutical applications, among others). Clay minerals can be easily modified through acid/basic treatments, the insertion of bulky ions or pillars into the interlayer spacing, and acid treatment, improving their physicochemical properties.Considering their low cost and high availability, clay minerals display a relatively high specific surface area in such a way that they have a great potential to be used as catalytic supports, since they can disperse expensive active phases as noble metals on the porous structures of their surfaces. In addition, the low cost of these supports allows their implementation on an industrial scale more easily than other supports, which are only feasible at the laboratory scale. Hydrotalcites (considered as anionic or basic clays) are also inexpensive materials with a great potential to be used as catalysts, since their textural properties could also be modified easily through the insertion of anions in their interlayer spacing. In the same way, these hydrotalcites, formed by layered double hydroxides, can lead to their respective mixed oxides after thermal treatment. These mixed oxides are considered basic catalysts with a high surface area, so they can also be used as catalytic support.
propane dehydrogenation --- hierarchical microstructure --- reconstruction --- high selectivity --- excellent durability --- reduction atmosphere --- coke deposition --- meixnerite --- PtIn/Mg(Al)O/ZnO --- layered double hydroxides --- Cu-based catalysts --- Cu/ZnO/Al2O3 --- furfural --- furfuryl alcohol --- n/a --- CuMgFe --- hydrogenolysis of glycerol --- 1,2-propanediol --- recycled --- isobutane dehydrogenation --- MgF2 promoter --- hydrotalcite-derived composites --- supported Pt-In catalysts --- kaolin --- mesoporous --- heterogeneous catalyst --- esterification --- waste valorization
Choose an application
Clay minerals are inexpensive and available materials with a wide range of applications (adsorbent, ion exchanger, support, catalyst, paper coating, ceramic, and pharmaceutical applications, among others). Clay minerals can be easily modified through acid/basic treatments, the insertion of bulky ions or pillars into the interlayer spacing, and acid treatment, improving their physicochemical properties.Considering their low cost and high availability, clay minerals display a relatively high specific surface area in such a way that they have a great potential to be used as catalytic supports, since they can disperse expensive active phases as noble metals on the porous structures of their surfaces. In addition, the low cost of these supports allows their implementation on an industrial scale more easily than other supports, which are only feasible at the laboratory scale. Hydrotalcites (considered as anionic or basic clays) are also inexpensive materials with a great potential to be used as catalysts, since their textural properties could also be modified easily through the insertion of anions in their interlayer spacing. In the same way, these hydrotalcites, formed by layered double hydroxides, can lead to their respective mixed oxides after thermal treatment. These mixed oxides are considered basic catalysts with a high surface area, so they can also be used as catalytic support.
Research & information: general --- Chemistry --- Inorganic chemistry --- propane dehydrogenation --- hierarchical microstructure --- reconstruction --- high selectivity --- excellent durability --- reduction atmosphere --- coke deposition --- meixnerite --- PtIn/Mg(Al)O/ZnO --- layered double hydroxides --- Cu-based catalysts --- Cu/ZnO/Al2O3 --- furfural --- furfuryl alcohol --- CuMgFe --- hydrogenolysis of glycerol --- 1,2-propanediol --- recycled --- isobutane dehydrogenation --- MgF2 promoter --- hydrotalcite-derived composites --- supported Pt-In catalysts --- kaolin --- mesoporous --- heterogeneous catalyst --- esterification --- waste valorization --- propane dehydrogenation --- hierarchical microstructure --- reconstruction --- high selectivity --- excellent durability --- reduction atmosphere --- coke deposition --- meixnerite --- PtIn/Mg(Al)O/ZnO --- layered double hydroxides --- Cu-based catalysts --- Cu/ZnO/Al2O3 --- furfural --- furfuryl alcohol --- CuMgFe --- hydrogenolysis of glycerol --- 1,2-propanediol --- recycled --- isobutane dehydrogenation --- MgF2 promoter --- hydrotalcite-derived composites --- supported Pt-In catalysts --- kaolin --- mesoporous --- heterogeneous catalyst --- esterification --- waste valorization
Choose an application
The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers—five featured and five regular—authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed—transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides.
faraday rotation --- thin films --- magneto-optics --- organic material --- tolane derivatives --- optical coatings --- monitoring --- deposition --- titanium dioxide --- optical constants --- two-photon absorption --- nonlinear refraction --- scattering --- laser-induced deflection --- absorption measurement --- CrWN coatings --- microstructure evolution --- spinodal decomposition --- thermal stability --- hardness --- plasma enhanced magnetron sputtering --- sidewall roughness --- optical scattering loss --- silicon-on-insulator waveguide --- multilayer --- ZnO --- Ag --- TCO --- transmittance --- structure --- resistance --- SnO2 --- Ti-doped --- annealing temperature --- electrical resistivity --- optical sensors --- optical materials --- zeolites --- ellipsometry --- single wavelength ellipsometry --- spectroscopic ellipsometry --- poly(vinyl alcohol) copolymers --- humidity sensing --- Al-doped ZnO --- ALD technique --- transparent conductive layers --- LC display --- flexible PDLC devices --- transparent conductive coatings --- optical sensing --- broadband design --- linear and non-linear optical properties --- organic diamagnetic materials
Choose an application
Thin films are important in many of the technologies used every day, impacting major markets for energy, medicine, and coatings. Scientists and engineers have been producing thin films on a wide range of surfaces for many decades but now have begun to explore giving these films new and controlled structures at the nanometer scale. These efforts are part of the new horizons opened by the field of nanoscience and impart novel structures and properties to these thin films. This book covers some of the methods for making these nanostructured thin films and their applications in areas impacting on health and energy usage.
Technology: general issues --- electrospinning --- poly(ethylene oxide) --- nanofiber diameter --- molecular weight --- concentration --- plasmonics --- localized surface plasmon resonance (LSPR) --- biosensing --- thin film --- gold nanostructures --- lithography --- nanohole array --- nanofabrication --- diphosphate-diarsenate --- crystal structure --- electrical properties --- transport pathways simulation --- metal-organic framework --- fabrication --- patterning --- tri-sodium citrate --- ZnO rod arrays --- response surface methodology --- expanded graphite --- flexible --- polydimethylsiloxane --- stretchable --- thin films --- electrospinning --- poly(ethylene oxide) --- nanofiber diameter --- molecular weight --- concentration --- plasmonics --- localized surface plasmon resonance (LSPR) --- biosensing --- thin film --- gold nanostructures --- lithography --- nanohole array --- nanofabrication --- diphosphate-diarsenate --- crystal structure --- electrical properties --- transport pathways simulation --- metal-organic framework --- fabrication --- patterning --- tri-sodium citrate --- ZnO rod arrays --- response surface methodology --- expanded graphite --- flexible --- polydimethylsiloxane --- stretchable --- thin films
Choose an application
Thin films are important in many of the technologies used every day, impacting major markets for energy, medicine, and coatings. Scientists and engineers have been producing thin films on a wide range of surfaces for many decades but now have begun to explore giving these films new and controlled structures at the nanometer scale. These efforts are part of the new horizons opened by the field of nanoscience and impart novel structures and properties to these thin films. This book covers some of the methods for making these nanostructured thin films and their applications in areas impacting on health and energy usage.
Technology: general issues --- electrospinning --- poly(ethylene oxide) --- nanofiber diameter --- molecular weight --- concentration --- plasmonics --- localized surface plasmon resonance (LSPR) --- biosensing --- thin film --- gold nanostructures --- lithography --- nanohole array --- nanofabrication --- diphosphate-diarsenate --- crystal structure --- electrical properties --- transport pathways simulation --- metal–organic framework --- fabrication --- patterning --- tri-sodium citrate --- ZnO rod arrays --- response surface methodology --- expanded graphite --- flexible --- polydimethylsiloxane --- stretchable --- thin films --- n/a --- metal-organic framework
Choose an application
Thin films are important in many of the technologies used every day, impacting major markets for energy, medicine, and coatings. Scientists and engineers have been producing thin films on a wide range of surfaces for many decades but now have begun to explore giving these films new and controlled structures at the nanometer scale. These efforts are part of the new horizons opened by the field of nanoscience and impart novel structures and properties to these thin films. This book covers some of the methods for making these nanostructured thin films and their applications in areas impacting on health and energy usage.
electrospinning --- poly(ethylene oxide) --- nanofiber diameter --- molecular weight --- concentration --- plasmonics --- localized surface plasmon resonance (LSPR) --- biosensing --- thin film --- gold nanostructures --- lithography --- nanohole array --- nanofabrication --- diphosphate-diarsenate --- crystal structure --- electrical properties --- transport pathways simulation --- metal–organic framework --- fabrication --- patterning --- tri-sodium citrate --- ZnO rod arrays --- response surface methodology --- expanded graphite --- flexible --- polydimethylsiloxane --- stretchable --- thin films --- n/a --- metal-organic framework
Listing 1 - 10 of 125 | << page >> |
Sort by
|