Narrow your search

Library

ULiège (29)

UCLL (28)

KU Leuven (27)

Odisee (27)

Thomas More Kempen (27)

Thomas More Mechelen (27)

VIVES (27)

LUCA School of Arts (26)

FARO (24)

Vlaams Parlement (24)

More...

Resource type

book (67)


Language

English (67)


Year
From To Submit

2023 (1)

2022 (11)

2021 (28)

2020 (20)

2019 (2)

More...
Listing 1 - 10 of 67 << page
of 7
>>
Sort by

Book
Zirconia : New Advances, Structure, Fabrication and Applications
Author:
ISBN: 1837688982 Year: 2023 Publisher: London, England : IntechOpen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is a comprehensive resource for students, researchers, professionals, and enthusiasts eager to understand the science, technology, and applications of zirconia. Its in-depth chapters, authored by experts in the field, provide a holistic view of this extraordinary material. Whether you're a materials scientist, an engineer, a dentist, or simply intrigued by the wonders of advanced ceramics, Zirconia - New Advances, Structure, Fabrication and Applications will expand your knowledge and inspire your curiosity. Zirconia, a remarkable ceramic material, has taken the world of materials science by storm. In this book, you will explore the diverse facets of zirconia, from its intriguing structure to its innovative applications. Take a journey into the world of zirconia, where innovation knows no bounds. Uncover its secrets, explore its applications, and witness the future of materials science unfold before your eyes.

Keywords

Zirconia.


Book
Microwave photoelasticity : exploiting multiple resonances to measure stress changes within yttria-partially-stabilized
Authors: --- ---
Year: 2021 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Science and technology of zirconia
Author:
ISBN: 0916094642 Year: 1984 Publisher: Columbus American ceramic society

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Zircon, zirconium, zirconia : similar names, different materials
Author:
ISBN: 3662642697 3662642689 Year: 2022 Publisher: Berlin, Germany : Springer-Verlag,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Strength, fracture toughness, and slow crack growth of zirconia/alumina composites at elevated temperature
Authors: --- ---
Year: 2003 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Revisiting the birth of 7YSZ thermal barrier coatings: Steve Stecura
Authors: --- ---
Year: 2017 Publisher: Cleveland, Ohio : National Aeronautics and Space Administration, Glenn Research Center,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Bioceramic Composites
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biomaterials—the materials used for the manufacturing of medical devices— are part of everyday life. Each one of us has likely had the experience of visting a dentist’s office, where a number of biomaterials are used temporarily or permanently in the mouth. Devices that are more complex are used for to support, heal, or replace living tissues or organs in the body that are suffering or compromised by different conditions. The materials used in their construction are metals and metallic alloys, polymers—ranging from elastomers to adhesives—and ceramics.Within these three cases, there are materials that are inert in the living environment, that perform an active function, or that are dissolved and resorbed by the metabolic pathways. Biomaterials are the outcome of a dynamic field of research that is driven by a growing demand and by the competition among the manufacturers of medical devices, with innovations improving the performance of existing devices and that contribute to the development of new ones. The collection of papers forming this volume have one particular class of of biomaterial in common, ceramic (bioceramic) composites, which as so far been used in applications such as orthopaedic joint replacement as well as in dental implants and restorations and that is being intensively investigated for bone regeneration applications. Today’s bioceramic composites (alumina–zirconia) are the golden standard in joint replacements. Several manufracturers have proposed different zirconia–alumina composites for use in hip, knee, and shoulder joint replacements, with several other innovative devices also being under study. In addition, bioceramic composites with innovative compositions are under development and will be on the market in years to come. Something that is especially interesting is the application of bioceramic composites in the regeneration of bone tissues. Research has devoted special attention to the doping of well-known materials (i.e., calcium phosphates and silicates) with bioactive ions, aiming to enhance the osteogenic ability and bioresorbability of man-made grafts. Moreover, high expectations rely on hybrid biopolymer/ceramic materials that mimic the complex composition and multiscale structure of bone tissue.


Book
Bioceramic Composites
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biomaterials—the materials used for the manufacturing of medical devices— are part of everyday life. Each one of us has likely had the experience of visting a dentist’s office, where a number of biomaterials are used temporarily or permanently in the mouth. Devices that are more complex are used for to support, heal, or replace living tissues or organs in the body that are suffering or compromised by different conditions. The materials used in their construction are metals and metallic alloys, polymers—ranging from elastomers to adhesives—and ceramics.Within these three cases, there are materials that are inert in the living environment, that perform an active function, or that are dissolved and resorbed by the metabolic pathways. Biomaterials are the outcome of a dynamic field of research that is driven by a growing demand and by the competition among the manufacturers of medical devices, with innovations improving the performance of existing devices and that contribute to the development of new ones. The collection of papers forming this volume have one particular class of of biomaterial in common, ceramic (bioceramic) composites, which as so far been used in applications such as orthopaedic joint replacement as well as in dental implants and restorations and that is being intensively investigated for bone regeneration applications. Today’s bioceramic composites (alumina–zirconia) are the golden standard in joint replacements. Several manufracturers have proposed different zirconia–alumina composites for use in hip, knee, and shoulder joint replacements, with several other innovative devices also being under study. In addition, bioceramic composites with innovative compositions are under development and will be on the market in years to come. Something that is especially interesting is the application of bioceramic composites in the regeneration of bone tissues. Research has devoted special attention to the doping of well-known materials (i.e., calcium phosphates and silicates) with bioactive ions, aiming to enhance the osteogenic ability and bioresorbability of man-made grafts. Moreover, high expectations rely on hybrid biopolymer/ceramic materials that mimic the complex composition and multiscale structure of bone tissue.


Book
Bioceramic Composites
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biomaterials—the materials used for the manufacturing of medical devices— are part of everyday life. Each one of us has likely had the experience of visting a dentist’s office, where a number of biomaterials are used temporarily or permanently in the mouth. Devices that are more complex are used for to support, heal, or replace living tissues or organs in the body that are suffering or compromised by different conditions. The materials used in their construction are metals and metallic alloys, polymers—ranging from elastomers to adhesives—and ceramics.Within these three cases, there are materials that are inert in the living environment, that perform an active function, or that are dissolved and resorbed by the metabolic pathways. Biomaterials are the outcome of a dynamic field of research that is driven by a growing demand and by the competition among the manufacturers of medical devices, with innovations improving the performance of existing devices and that contribute to the development of new ones. The collection of papers forming this volume have one particular class of of biomaterial in common, ceramic (bioceramic) composites, which as so far been used in applications such as orthopaedic joint replacement as well as in dental implants and restorations and that is being intensively investigated for bone regeneration applications. Today’s bioceramic composites (alumina–zirconia) are the golden standard in joint replacements. Several manufracturers have proposed different zirconia–alumina composites for use in hip, knee, and shoulder joint replacements, with several other innovative devices also being under study. In addition, bioceramic composites with innovative compositions are under development and will be on the market in years to come. Something that is especially interesting is the application of bioceramic composites in the regeneration of bone tissues. Research has devoted special attention to the doping of well-known materials (i.e., calcium phosphates and silicates) with bioactive ions, aiming to enhance the osteogenic ability and bioresorbability of man-made grafts. Moreover, high expectations rely on hybrid biopolymer/ceramic materials that mimic the complex composition and multiscale structure of bone tissue.

Keywords

Technology: general issues --- History of engineering & technology --- biomaterials --- bone grafts --- bone repair --- dental implants --- scaffolds --- alumina --- zirconia --- Alumina-Toughened Zirconia --- Zirconia-Toughened Alumina --- hip arthroplasty --- calcium phosphates --- hydroxyapatite --- bone cements --- bioactive composites --- bone regeneration --- zirconia-alumina composite --- stabilizing oxides --- critical grain size --- tetragonality --- mechanical properties --- fracture toughness --- flexural strength --- ceramic additive manufacturing --- DLP --- bioceramics --- calcium phosphate --- carbon fibers --- mineralization --- zirconia-toughened alumina --- phase transformation --- Raman spectroscopy --- calcium-based biomineralization --- hydroxyapatite nanoparticles --- biomimicry --- multifunctional materials --- Freeze Foam --- hybrid bone --- biocompatibility --- bone replacement --- transformation toughening --- platelet reinforcement --- hip --- alumina matrix composite --- AMC --- hip prosthesis --- prosthesis --- case series --- ceramic-on-ceramic --- biomaterials --- bone grafts --- bone repair --- dental implants --- scaffolds --- alumina --- zirconia --- Alumina-Toughened Zirconia --- Zirconia-Toughened Alumina --- hip arthroplasty --- calcium phosphates --- hydroxyapatite --- bone cements --- bioactive composites --- bone regeneration --- zirconia-alumina composite --- stabilizing oxides --- critical grain size --- tetragonality --- mechanical properties --- fracture toughness --- flexural strength --- ceramic additive manufacturing --- DLP --- bioceramics --- calcium phosphate --- carbon fibers --- mineralization --- zirconia-toughened alumina --- phase transformation --- Raman spectroscopy --- calcium-based biomineralization --- hydroxyapatite nanoparticles --- biomimicry --- multifunctional materials --- Freeze Foam --- hybrid bone --- biocompatibility --- bone replacement --- transformation toughening --- platelet reinforcement --- hip --- alumina matrix composite --- AMC --- hip prosthesis --- prosthesis --- case series --- ceramic-on-ceramic


Book
Metal Oxides
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue contains ten research papers, three of which review papers. It is a miscellaneous composition encompassing several applications where metal oxides play a key role. Some papers also give insights into novel synthesis methods and processes aiming to reduce negative environmental impacts and increase materials and process efficiency, thus also covering a broader concern of sustainability issues. The topics covered in this issues are: transparent conductive oxides, ceramic composites for tool applications, oxides nanoparticles for A-TIG welding, critical raw materials saving, metallurgical waste treatment, oxides for high temperature applications, nanostructured oxides and composites for gas sensing and desulfuration, and metal oxides sorbents for CO2 capture.

Listing 1 - 10 of 67 << page
of 7
>>
Sort by