Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Deze paper onderzoekt of de Amerikaanse banken worden bevoordeeld ten opzichte van hun Europese en Aziatische tegenhangers via de rating, gegeven door Moody's en Standard & Poor's. Om dit te onderzoeken, vergelijken we de rating van Moody's en Standard & Poor's met de kans op faling (probability of default) van Moody's en ons eigen model. We onderzoeken dit voor 16 banken over een tijdspanne van 10 jaar; m.n. van 2003Q1 tot 2012Q4. Deze periode is boeiend omdat deze de aanloop naar de financiële crisis in 2008, de crisis zelf en het begin van de herstelfase bevat. Dit kan ertoe leiden dat we problemen omtrent de rating blootleggen en zo voorkomen dat dezelfde fouten worden gemaakt in de toekomst. We achterhaalden dat de ratings van Moody's en Standard & Poor's sterk gecorreleerd zijn, maar er bestaat slechts een beperkte, negatieve correlatie tussen de ratings enerzijds en de PD en ons model anderzijds. Nochtans verwachtten we dat een hogere kans op faling zou resulteren in een lagere rating, aangezien deze metingen quasi hetzelfde berekenen: de kans dat een bank in faling gaat.Daarnaast concluderen we dat er effectief een zogenaamde 'home country bias' bestaat. Als we de gemiddelde PD vergelijken met de gemiddelde rating van Moody's en Standard & Poor's, vinden we dat de Amerikaanse banken licht bevoordeeld zijn. Hoewel er tussen Amerikaanse banken onderling ook een vertekening is tussen de ratings, merken we op dat Amerikaanse banken, met dezelfde kans op faling, een betere rating krijgen dan de Europese en Aziatische banken. Vergelijken we de gemiddelde rating met de resultaten van ons eigen model, dan komen we tot een gelijkaardige conclusie voor de Europese banken, al is het bewijs hiervoor iets minder duidelijk aanwezig.Over het algemeen stellen we vast dat de ratings niet voldoende worden aangepast aan de kans dat een bank in faling gaat en daarom worden ze best herzien.
Altman Z score. --- Bankratings. --- Home country bias. --- Rating American, European, Asian banks. --- Rating agencies. --- Ratings. --- S181-financiële-wetenschappen.
Choose an application
Deze paper onderzoekt of de Amerikaanse banken worden bevoordeeld ten opzichte van hun Europese en Aziatische tegenhangers via de rating, gegeven door Moody's en Standard & Poor's. Om dit te onderzoeken, vergelijken we de rating van Moody's en Standard & Poor's met de kans op faling (probability of default) van Moody's en ons eigen model. We onderzoeken dit voor 16 banken over een tijdspanne van 10 jaar; m.n. van 2003Q1 tot 2012Q4. Deze periode is boeiend omdat deze de aanloop naar de financiële crisis in 2008, de crisis zelf en het begin van de herstelfase bevat. Dit kan ertoe leiden dat we problemen omtrent de rating blootleggen en zo voorkomen dat dezelfde fouten worden gemaakt in de toekomst. We achterhaalden dat de ratings van Moody's en Standard & Poor's sterk gecorreleerd zijn, maar er bestaat slechts een beperkte, negatieve correlatie tussen de ratings enerzijds en de PD en ons model anderzijds. Nochtans verwachtten we dat een hogere kans op faling zou resulteren in een lagere rating, aangezien deze metingen quasi hetzelfde berekenen: de kans dat een bank in faling gaat.Daarnaast concluderen we dat er effectief een zogenaamde 'home country bias' bestaat. Als we de gemiddelde PD vergelijken met de gemiddelde rating van Moody's en Standard & Poor's, vinden we dat de Amerikaanse banken licht bevoordeeld zijn. Hoewel er tussen Amerikaanse banken onderling ook een vertekening is tussen de ratings, merken we op dat Amerikaanse banken, met dezelfde kans op faling, een betere rating krijgen dan de Europese en Aziatische banken. Vergelijken we de gemiddelde rating met de resultaten van ons eigen model, dan komen we tot een gelijkaardige conclusie voor de Europese banken, al is het bewijs hiervoor iets minder duidelijk aanwezig.Over het algemeen stellen we vast dat de ratings niet voldoende worden aangepast aan de kans dat een bank in faling gaat en daarom worden ze best herzien.
Altman Z score. --- Bank rating. --- Home country bias. --- Rating American, European, Asian banks. --- Rating agencies. --- Ratings. --- S181-financiële-wetenschappen.
Choose an application
The problem of reverse-engineering biological networks has attracted a lot of attention in the last decades. Studying the interactions occurring inside a living organism is of great importance to understand the behavior of biological systems. The development of computer science and the abundance of new genetic data raised the question of predicting gene regulatory networks. These networks describe how some genes regulate the expression of some other genes. Many methods have already been developed to infer these networks from gene expression data. Among them, GENIE3, a method based on Random Forests, was proposed and achieved state-of-the-art performance. However, one drawback of GENIE3 is its inability to use the specificities of some types of gene expression measurements, potentially missing useful information. In particular, datasets often include knockouts, which are measurements done after the deletion of a gene. This thesis proposes new variants for GENIE3, based on the idea of enriched random forests, in order to integrate knockout specific information as weights guiding GENIE3 to a better prediction. First, the methods are tested on ideal cases where a knockout of every gene is available. Better predictions are indeed achieved and several ways of achieving the best results are highlighted. Realistic cases are then tested. Less convincing results are then obtained, although interesting phenomena are discovered. The second part of the thesis studies the possibility of predicting the effect of knockouts. Differences and similarities with the GRN prediction problem are analyzed and a method of evaluation, although imperfect, is proposed. Several methods are then evaluated, showing relatively encouraging results. Some initiated reflections call for future developments. The possibility of using the proposed weighted GENIE3 methods in other situations is also briefly explained. Important improvements are indeed achieved on several datasets without the use of knockouts.
gene regulatory network --- machine learning --- random forest --- enriched random forest --- knockout --- GRN inference --- Z-score --- Ingénierie, informatique & technologie > Sciences informatiques
Choose an application
The deficits of mammography and the potential of noninvasive diagnostic testing using circulating miRNA profiles are presented in our first review article. Exosomes are important in the transfer of genetic information. The current knowledge on exosome-associated DNAs and on vesicle-associated DNAs and their role in pregnancy-related complications is presented in the next article. The major obstacle is the lack of a standardized technique for the isolation and measurement of exosomes. One review has summarized the latest results on cell-free nucleic acids in inflammatory bowel disease (IBD). Despite the extensive research, the etiology and exact pathogenesis are still unclear, although similarity to the cell-free ribonucleic acids (cfRNAs) observed in other autoimmune diseases seems to be relevant in IBD. Liquid biopsy is a useful tool for the differentiation of leiomyomas and sarcomas in the corpus uteri. One manuscript has collected the most important knowledge of mesenchymal uterine tumors and shows the benefits of noninvasive sampling. Microchimerism has also recently become a hot topic. It is discussed in the context of various forms of transplantation and transplantation-related advanced therapies, the available cell-free nucleic acid (cfNA) markers, and the detection platforms that have been introduced. Ovarian cancer is one of the leading serious malignancies among women, with a high incidence of mortality; the introduction of new noninvasive diagnostic markers could help in its early detection and treatment monitoring. Epigenetic regulation is very important during the development of diseases and drug resistance. Methylation changes are important signs during ovarian cancer development, and it seems that the CDH1 gene is a potential candidate for being a noninvasive biomarker in the diagnosis of ovarian cancer. Preeclampsia is a mysterious disease—despite intensive research, the exact details of its development are unknown. It seems that cell-free nucleic acids could serve as biomarkers for the early detection of this disease. Three research papers deal with the prenatal application of cfDNA. Copy number variants (CNVs) are important subjects for the study of human genome variations, as CNVs can contribute to population diversity and human genetic diseases. These are useful in NIPT as a source of population specific data. The reliability of NIPT depends on the accurate estimation of fetal fraction. Improvement in the success rate of in vitro fertilization (IVF) and embryo transfer (ET) is an important goal. The measurement of embryo-specific small noncoding RNAs in culture media could improve the efficiency of ET.
n/a --- screening --- single nucleotide polymorphism --- predictive and preventive approach --- PTEN --- cell-free DNAs --- fetal fraction --- gestational hypertension --- RASSF1 --- CDH1 --- RT-PCR --- cfDNA --- statistical models --- hematopoietic stem cell transplantation --- NanoString --- solid organ transplantation --- copy number variants --- sarcomas --- liquid biopsy --- obesity --- fetal DNA --- neutrophil extracellular traps --- mammography --- non-invasive prenatal testing --- ovarian cancer --- circulating miRNA --- pyrosequencing --- growth retardation --- preeclampsia --- gestational diabetes mellitus --- biomarker --- inflammatory bowel disease --- multi-level diagnostics --- PAX1 --- population study --- nuclease activity --- NETosis --- omics --- piRNA --- cell-free DNA --- prediction --- leiomyosarcomas --- network analysis --- NGS --- statistical methods --- circulating nucleic acids --- deletion/insertion polymorphism --- gender differences --- leiomyomas --- fetal growth restriction --- blood plasma --- exosomes --- miRNA --- pregnancy-related complications --- NIPT --- genetic marker --- cell-free nucleic acids --- extracellular vesicles --- expression --- next generation sequencing --- breast cancer --- individualized patient profile --- circulating tumor cells --- maternal serum screening --- personalized medicine --- embryo culture medium --- C19MC microRNA --- DNA --- cell-free RNAs --- z-score --- fetal cells --- microchimerism --- aging --- plasma
Choose an application
Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions.
movement intention --- brain–computer interface --- movement-related cortical potential --- neurorehabilitation --- phonocardiogram --- machine learning --- empirical mode decomposition --- feature extraction --- mel-frequency cepstral coefficients --- support vector machines --- computer aided diagnosis --- congenital heart disease --- statistical analysis --- convolutional neural network (CNN) --- long short-term memory (LSTM) --- emotion recognition --- EEG --- ECG --- GSR --- deep neural network --- physiological signals --- electroencephalography --- Brain-Computer Interface --- multiscale principal component analysis --- successive decomposition index --- motor imagery --- mental imagery --- classification --- hybrid brain-computer interface (BCI) --- home automation --- electroencephalogram (EEG) --- steady-state visually evoked potential (SSVEP) --- eye blink --- short-time Fourier transform (STFT) --- convolution neural network (CNN) --- human machine interface (HMI) --- rehabilitation --- wheelchair --- quadriplegia --- Raspberry Pi --- image gradient --- AMR voice --- Open-CV --- image processing --- acoustic --- startle --- reaction --- response --- reflex --- blink --- mobile --- sound --- stroke --- EMG --- brain-computer interface --- myoelectric control --- pattern recognition --- functional near-infrared spectroscopy --- z-score method --- channel selection --- region of interest --- channel of interest --- respiratory rate (RR) --- Electrocardiogram (ECG) --- ECG derived respiration (EDR) --- auscultation sites --- pulse plethysmograph --- biomedical signal processing --- feature selection and reduction --- discrete wavelet transform --- hypertension
Choose an application
Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions.
Medical equipment & techniques --- movement intention --- brain–computer interface --- movement-related cortical potential --- neurorehabilitation --- phonocardiogram --- machine learning --- empirical mode decomposition --- feature extraction --- mel-frequency cepstral coefficients --- support vector machines --- computer aided diagnosis --- congenital heart disease --- statistical analysis --- convolutional neural network (CNN) --- long short-term memory (LSTM) --- emotion recognition --- EEG --- ECG --- GSR --- deep neural network --- physiological signals --- electroencephalography --- Brain-Computer Interface --- multiscale principal component analysis --- successive decomposition index --- motor imagery --- mental imagery --- classification --- hybrid brain-computer interface (BCI) --- home automation --- electroencephalogram (EEG) --- steady-state visually evoked potential (SSVEP) --- eye blink --- short-time Fourier transform (STFT) --- convolution neural network (CNN) --- human machine interface (HMI) --- rehabilitation --- wheelchair --- quadriplegia --- Raspberry Pi --- image gradient --- AMR voice --- Open-CV --- image processing --- acoustic --- startle --- reaction --- response --- reflex --- blink --- mobile --- sound --- stroke --- EMG --- brain-computer interface --- myoelectric control --- pattern recognition --- functional near-infrared spectroscopy --- z-score method --- channel selection --- region of interest --- channel of interest --- respiratory rate (RR) --- Electrocardiogram (ECG) --- ECG derived respiration (EDR) --- auscultation sites --- pulse plethysmograph --- biomedical signal processing --- feature selection and reduction --- discrete wavelet transform --- hypertension
Listing 1 - 6 of 6 |
Sort by
|