Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.
Technology: general issues --- photocatalysis --- H2 generation --- water splitting --- solar energy --- hydrogen production --- methanol photo-splitting --- heterojunction --- CuS@CuGaS2 --- electron-hole recombination --- perovskite oxynitride --- band gap --- density-functional theory --- Niobium(V) oxide --- graphitic carbon nitride --- hydrothermal synthesis --- H2 evolution --- heterostructures --- Z-Scheme --- TiO2 --- g-C3N4 --- CdS --- energy --- spherical particle --- disordered surface --- photocatalysts --- MoS2 --- MoSe2 --- photoelectrochemical deposition --- rapid-thermal annealing --- hydrogen evolution --- CO2 reduction --- n/a
Choose an application
Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.
photocatalysis --- H2 generation --- water splitting --- solar energy --- hydrogen production --- methanol photo-splitting --- heterojunction --- CuS@CuGaS2 --- electron-hole recombination --- perovskite oxynitride --- band gap --- density-functional theory --- Niobium(V) oxide --- graphitic carbon nitride --- hydrothermal synthesis --- H2 evolution --- heterostructures --- Z-Scheme --- TiO2 --- g-C3N4 --- CdS --- energy --- spherical particle --- disordered surface --- photocatalysts --- MoS2 --- MoSe2 --- photoelectrochemical deposition --- rapid-thermal annealing --- hydrogen evolution --- CO2 reduction --- n/a
Choose an application
Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.
Technology: general issues --- photocatalysis --- H2 generation --- water splitting --- solar energy --- hydrogen production --- methanol photo-splitting --- heterojunction --- CuS@CuGaS2 --- electron-hole recombination --- perovskite oxynitride --- band gap --- density-functional theory --- Niobium(V) oxide --- graphitic carbon nitride --- hydrothermal synthesis --- H2 evolution --- heterostructures --- Z-Scheme --- TiO2 --- g-C3N4 --- CdS --- energy --- spherical particle --- disordered surface --- photocatalysts --- MoS2 --- MoSe2 --- photoelectrochemical deposition --- rapid-thermal annealing --- hydrogen evolution --- CO2 reduction
Choose an application
This Special Issue is aimed at highlighting the potentialities of membrane and membrane reactor operations in various sectors of chemical engineering, based on application of the process intensification strategy. In all of the contributions, the principles of process intensification were pursued during the adoption of membrane technology, demonstrating how it may lead to the development of redesigned processes that are more compact and efficient while also being more environmental friendly, energy saving, and amenable to integration with other green processes. This Special Issue comprises a number of experimental and theoretical studies dealing with the application of membrane and membrane reactor technology in various scientific fields of chemical engineering, such as membrane distillation for wastewater treatment, hydrogen production from reforming reactions via inorganic membrane and membrane photoassisted reactors, membrane desalination, gas/liquid phase membrane separation of CO2, and membrane filtration for the recovery of antioxidants from agricultural byproducts, contributing to valorization of the potentialities of membrane operations.
membrane configuration --- solar energy --- modeling --- gas/liquid separation --- wastewater treatment --- membrane distillation --- hydrogel composite membranes --- on-board --- hydrogen --- hydrogen production --- ethanol --- multivariate analysis --- membrane engineering --- micro channel --- two-phase flow --- advanced separations --- water splitting --- micro direct methanol fuel cell (µDMFC) --- ultrafiltration (UF) --- palladium --- ionic liquids membranes --- photocatalysis --- fouling renewable heat sources --- micro contactor --- porous membranes --- desalination --- clarification --- separator --- steam reforming --- membrane reactor --- methane --- photocatalytic membrane reactor --- Z-scheme --- orange press liquor --- CO2 conversion --- microfiltration (MF) --- Pd-based membrane
Choose an application
Photoactive nanomaterials have been receiving increasing attention due to their potential application in the light-driven degradation of water and gas-phase pollutants. However, to exploit the great potential of photoactive materials and access their properties requires fine-tuning of their size/shape-dependent chemical–physical properties, and on the ability to integrate them in photoreactors or to deposit them onto large surfaces. Therefore, the synthetic approach as well as post-synthesis manipulation could strongly affect the final photocatalytic properties of the nanomaterial. The aim of the present Special Issue is to report on the most recent progress towards the application of photoactive nanomaterials and nanomaterial-based coatings in pollutant degradation, paying particular attention to cases close to real application: scalable synthetic approaches to nanocatalysts, preparation of nanocatalyst-based coatings, degradation of real pollutants and bacterial inactivation, and application in building materials.
toxicity --- polar herbicide --- composite nanorods --- heterojunction --- degradation --- nanocomposites --- nanoparticles --- polyester --- TiO2 nanotube --- environmental remediation --- building materials --- hydroxyapatite --- VOCs --- reactive green 12 --- Pt loaded TiO2 --- nanomaterials --- expansion --- photocatalytic activity --- CuxO/TiO2 --- water remediation --- antimicrobial properties --- sputtering --- diclofenac --- mesoporous --- TiO2 --- advanced oxidation processes --- mortar --- disinfection --- HiPIMS --- microcracks --- Cu2O --- sulfate attack --- NOx --- photocatalysis --- blast furnace slag --- paraquat --- recalcitrant pollutants --- shell thickness --- water treatments --- visible light LEDs --- cement --- deterioration --- transformation products --- gas-phase pollutants --- titanium dioxide --- photoelectrocatalysis --- Z-scheme
Choose an application
The quality of water is not only a technological and scientific issue, but a social and economic problem, in both developed and developing countries. Besides local regulations, which differ between regions and need constant upgrades, significant scientific developments are required in both the detection and removal of water contaminants. This Issue focuses on some recent advancements in the photocatalytic removal of organic pollutants, which is one of the aspects of the problem that involves the need of advanced catalysts and implies significant advancements in the field of materials science and chemical engineering.
History of engineering & technology --- indigo carmine --- resin --- Dielectric Barrier Discharge --- adsorption --- regeneration --- anatase/brookite biphasic --- nitrogen-doping --- sol-gel method --- visible light photocatalysis --- degradation of dyes --- polyaniline --- titanium dioxide --- copper(II) oxide --- cobalt oxide(II,III) --- photocatalytic fuel cell --- graphitic carbon nitride --- Fe doping --- Z-scheme --- strontium aluminates --- dye photodecomposition --- hydrothermal reaction --- sol–gel method --- phosphorescence --- photocatalytic decomposition of rhodamine B --- MIL-53(Fe) --- Ni/Fe-MOF --- visible light irradiation --- n/a
Choose an application
The quality of water is not only a technological and scientific issue, but a social and economic problem, in both developed and developing countries. Besides local regulations, which differ between regions and need constant upgrades, significant scientific developments are required in both the detection and removal of water contaminants. This Issue focuses on some recent advancements in the photocatalytic removal of organic pollutants, which is one of the aspects of the problem that involves the need of advanced catalysts and implies significant advancements in the field of materials science and chemical engineering.
indigo carmine --- resin --- Dielectric Barrier Discharge --- adsorption --- regeneration --- anatase/brookite biphasic --- nitrogen-doping --- sol-gel method --- visible light photocatalysis --- degradation of dyes --- polyaniline --- titanium dioxide --- copper(II) oxide --- cobalt oxide(II,III) --- photocatalytic fuel cell --- graphitic carbon nitride --- Fe doping --- Z-scheme --- strontium aluminates --- dye photodecomposition --- hydrothermal reaction --- sol–gel method --- phosphorescence --- photocatalytic decomposition of rhodamine B --- MIL-53(Fe) --- Ni/Fe-MOF --- visible light irradiation --- n/a
Choose an application
The quality of water is not only a technological and scientific issue, but a social and economic problem, in both developed and developing countries. Besides local regulations, which differ between regions and need constant upgrades, significant scientific developments are required in both the detection and removal of water contaminants. This Issue focuses on some recent advancements in the photocatalytic removal of organic pollutants, which is one of the aspects of the problem that involves the need of advanced catalysts and implies significant advancements in the field of materials science and chemical engineering.
History of engineering & technology --- indigo carmine --- resin --- Dielectric Barrier Discharge --- adsorption --- regeneration --- anatase/brookite biphasic --- nitrogen-doping --- sol-gel method --- visible light photocatalysis --- degradation of dyes --- polyaniline --- titanium dioxide --- copper(II) oxide --- cobalt oxide(II,III) --- photocatalytic fuel cell --- graphitic carbon nitride --- Fe doping --- Z-scheme --- strontium aluminates --- dye photodecomposition --- hydrothermal reaction --- phosphorescence --- photocatalytic decomposition of rhodamine B --- MIL-53(Fe) --- Ni/Fe-MOF --- visible light irradiation
Listing 1 - 8 of 8 |
Sort by
|