Listing 1 - 8 of 8 |
Sort by
|
Choose an application
Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.
Medicine --- co-culture --- marine microbes --- natural products --- structural diversity --- biological activities --- food allergy --- deep-sea-derived viridicatol --- X-ray single crystal --- intestinal barrier --- mast cell --- calcium influx --- Chlorella --- enzymes --- lipases --- molecular modeling --- sulfated polysaccharides --- antiviral --- SARS-CoV-2 --- docking --- molecular dynamic simulations --- sea cucumber --- bioactivity --- diversity --- microorganism --- polyketides --- alkaloids --- marine-derived fungus --- Penicillium sp. --- indole-diterpenoids --- cytotoxicity --- antibacterial activity --- Leizhou Peninsula --- mangrove soil --- actinomycetia --- antimicrobial activity --- secondary metabolites --- dereplication --- metabolomics tools --- trioxacarcins --- mansouramycins --- isoquinolinequinones --- marine-derived Streptomyces sp. --- n/a
Choose an application
Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.
co-culture --- marine microbes --- natural products --- structural diversity --- biological activities --- food allergy --- deep-sea-derived viridicatol --- X-ray single crystal --- intestinal barrier --- mast cell --- calcium influx --- Chlorella --- enzymes --- lipases --- molecular modeling --- sulfated polysaccharides --- antiviral --- SARS-CoV-2 --- docking --- molecular dynamic simulations --- sea cucumber --- bioactivity --- diversity --- microorganism --- polyketides --- alkaloids --- marine-derived fungus --- Penicillium sp. --- indole-diterpenoids --- cytotoxicity --- antibacterial activity --- Leizhou Peninsula --- mangrove soil --- actinomycetia --- antimicrobial activity --- secondary metabolites --- dereplication --- metabolomics tools --- trioxacarcins --- mansouramycins --- isoquinolinequinones --- marine-derived Streptomyces sp. --- n/a
Choose an application
Over 70% of the Earth’s surface is covered by oceans and seas, which are massively complex and consist of diverse assemblages of life forms. Marine bacteria, fungi, and other microorganisms develop unique metabolic and physiological capabilities that enable them to survive in extreme habitats and to produce compounds that might not be produced by their terrestrial counterparts. In the last few decades, the systematic investigations of marine/marine-derived microorganisms as sources of novel biologically active agents has exponentially increased. This Special Issue will focus on aspects relating to new bioactive metabolites from marine microorganisms including the isolation, taxonomy, and/or dereplication of microorganisms and the corresponding isolation, structure elucidation, biosynthesis, and/or biological activities of the new compounds. Comprehensive topical review articles relating to marine metabolites will also be considered.
Medicine --- co-culture --- marine microbes --- natural products --- structural diversity --- biological activities --- food allergy --- deep-sea-derived viridicatol --- X-ray single crystal --- intestinal barrier --- mast cell --- calcium influx --- Chlorella --- enzymes --- lipases --- molecular modeling --- sulfated polysaccharides --- antiviral --- SARS-CoV-2 --- docking --- molecular dynamic simulations --- sea cucumber --- bioactivity --- diversity --- microorganism --- polyketides --- alkaloids --- marine-derived fungus --- Penicillium sp. --- indole-diterpenoids --- cytotoxicity --- antibacterial activity --- Leizhou Peninsula --- mangrove soil --- actinomycetia --- antimicrobial activity --- secondary metabolites --- dereplication --- metabolomics tools --- trioxacarcins --- mansouramycins --- isoquinolinequinones --- marine-derived Streptomyces sp.
Choose an application
Marine fungal natural products are well-known as the “blue gold,” as they have been promising leads for drug discovery and development. Even though marine fungi are less explored in comparison to their terrestrial counterparts, a number of useful hits have been obtained from a drug discovery perspective. Topics discussed in this book include a review on novel natural products from extremophilic fungi, secondary metabolites from deep-sea fungi; natural products from fungi in a symbiotic relationship with marine macro-organisms; and bioactive metabolites from sediment-derived fungi. Marine biologists, chemists, and pharmacologists will find the book a good reference material. The book covers various bioactive marine fungal natural products, and it is hoped that this book aids scientists explore fungal chemical diversity.
natural products --- extremophilic fungi --- biological activity --- deep-sea derived fungus --- Phialocephala sp. --- nitrogen-containing sorbicillinoids --- radical scavenging activity --- sponge-derived fungus --- Alternaria sp. --- perylenequinone derivatives --- X-ray single crystal diffraction --- cytotoxic activity --- antibacterial --- Phomopsis lithocarpus --- benzophenone derivatives --- eremophilane derivative --- aspochalasin --- tricyclic fused --- gut fungus --- cytotoxicity --- endophytic fungus --- Myrothecium sp. --- meroterpenoids --- isocoumarinoids --- α-glucosidase inhibitors --- salt-resistant plant --- Apocynum venetum --- Fusarium solani H915 --- bis-alkenoic acid esters --- fusaridioic acid A --- fusariumester A1 --- fusariumester A2 --- fusariumester B --- tea pathogenic fungi inhibitory effect --- herqueinones --- phenalenones --- Penicillium sp. --- marine-derived fungi --- adipogenesis --- anti-angiogenesis --- anti-inflammatory --- marine-derived fungus --- Aspergillus versicolor --- diketopiperazine --- anthraquinone derivatives --- Sporendonema casei --- cytotoxic activities --- antibacterial activities --- n/a
Choose an application
Unravelling an intricate network of interatomic interactions and their relations to different behaviors of chemical compounds is key to the successful design of new materials for both existing and novel applications, from medicine to innovative concepts of molecular electronics and spintronics. X-ray crystallography has proven to be very helpful in addressing many important chemical problems in modern materials science and biosciences. Intertwined with computational techniques, it provides insights into the nature of chemical bonding and the physicochemical properties (including optical, magnetic, electrical, mechanical, and others) of crystalline materials, otherwise accessible by experimental techniques that are not so readily available to chemists. In addition to the advanced approaches in charge density analysis made possible by X-ray diffraction, the information collected over the years through this technique (which is easily mined from huge databases) has tremendous use in the design of new materials for medicine, gas storage, and separation applications as well as for electronic devices. This Special Issue contains two reviews and five articles that cover very different aspects of ‘composition–structure’ and ‘structure–property’ relations identified by X-ray diffraction and complementary techniques (from conventional IR and Raman spectroscopies to cutting-edge quantum chemical calculations) and their use in crystal engineering and materials science.
organofluorine compounds --- polymorphism --- QTAIM --- NCI --- quantum chemical calculations --- lattice energy --- intermolecular interactions --- F…F interactions --- boron cages --- dihydrogen bonds --- hirshfeld surface --- cambridge structural database --- crystal structures --- knowledge-based analysis --- structure–property relations --- supramolecular chemistry --- chalcogen bond --- halogen bond --- triiodide anion --- Raman spectroscopy --- thermal analysis --- thiazolo[2,3-b][1,3]thiazinium salts --- RNA structural motifs --- base-base interactions --- classification of base arrangement --- RNA crystallographic structures --- chiral thiophosphorylated thioureas --- chirality control --- nickel(II) complexes --- X-ray single crystal diffraction --- X-ray crystallography --- in situ crystallization --- Hirshfeld surface analyzes --- lattice energies --- packing motifs --- polymorph stability --- n/a --- F...F interactions --- structure-property relations
Choose an application
Unravelling an intricate network of interatomic interactions and their relations to different behaviors of chemical compounds is key to the successful design of new materials for both existing and novel applications, from medicine to innovative concepts of molecular electronics and spintronics. X-ray crystallography has proven to be very helpful in addressing many important chemical problems in modern materials science and biosciences. Intertwined with computational techniques, it provides insights into the nature of chemical bonding and the physicochemical properties (including optical, magnetic, electrical, mechanical, and others) of crystalline materials, otherwise accessible by experimental techniques that are not so readily available to chemists. In addition to the advanced approaches in charge density analysis made possible by X-ray diffraction, the information collected over the years through this technique (which is easily mined from huge databases) has tremendous use in the design of new materials for medicine, gas storage, and separation applications as well as for electronic devices. This Special Issue contains two reviews and five articles that cover very different aspects of ‘composition–structure’ and ‘structure–property’ relations identified by X-ray diffraction and complementary techniques (from conventional IR and Raman spectroscopies to cutting-edge quantum chemical calculations) and their use in crystal engineering and materials science.
Research & information: general --- organofluorine compounds --- polymorphism --- QTAIM --- NCI --- quantum chemical calculations --- lattice energy --- intermolecular interactions --- F...F interactions --- boron cages --- dihydrogen bonds --- hirshfeld surface --- cambridge structural database --- crystal structures --- knowledge-based analysis --- structure-property relations --- supramolecular chemistry --- chalcogen bond --- halogen bond --- triiodide anion --- Raman spectroscopy --- thermal analysis --- thiazolo[2,3-b][1,3]thiazinium salts --- RNA structural motifs --- base-base interactions --- classification of base arrangement --- RNA crystallographic structures --- chiral thiophosphorylated thioureas --- chirality control --- nickel(II) complexes --- X-ray single crystal diffraction --- X-ray crystallography --- in situ crystallization --- Hirshfeld surface analyzes --- lattice energies --- packing motifs --- polymorph stability
Choose an application
Marine fungal natural products are well-known as the “blue gold,” as they have been promising leads for drug discovery and development. Even though marine fungi are less explored in comparison to their terrestrial counterparts, a number of useful hits have been obtained from a drug discovery perspective. Topics discussed in this book include a review on novel natural products from extremophilic fungi, secondary metabolites from deep-sea fungi; natural products from fungi in a symbiotic relationship with marine macro-organisms; and bioactive metabolites from sediment-derived fungi. Marine biologists, chemists, and pharmacologists will find the book a good reference material. The book covers various bioactive marine fungal natural products, and it is hoped that this book aids scientists explore fungal chemical diversity.
Research & information: general --- natural products --- extremophilic fungi --- biological activity --- deep-sea derived fungus --- Phialocephala sp. --- nitrogen-containing sorbicillinoids --- radical scavenging activity --- sponge-derived fungus --- Alternaria sp. --- perylenequinone derivatives --- X-ray single crystal diffraction --- cytotoxic activity --- antibacterial --- Phomopsis lithocarpus --- benzophenone derivatives --- eremophilane derivative --- aspochalasin --- tricyclic fused --- gut fungus --- cytotoxicity --- endophytic fungus --- Myrothecium sp. --- meroterpenoids --- isocoumarinoids --- α-glucosidase inhibitors --- salt-resistant plant --- Apocynum venetum --- Fusarium solani H915 --- bis-alkenoic acid esters --- fusaridioic acid A --- fusariumester A1 --- fusariumester A2 --- fusariumester B --- tea pathogenic fungi inhibitory effect --- herqueinones --- phenalenones --- Penicillium sp. --- marine-derived fungi --- adipogenesis --- anti-angiogenesis --- anti-inflammatory --- marine-derived fungus --- Aspergillus versicolor --- diketopiperazine --- anthraquinone derivatives --- Sporendonema casei --- cytotoxic activities --- antibacterial activities
Choose an application
Marine fungal natural products are well-known as the “blue gold,” as they have been promising leads for drug discovery and development. Even though marine fungi are less explored in comparison to their terrestrial counterparts, a number of useful hits have been obtained from a drug discovery perspective. Topics discussed in this book include a review on novel natural products from extremophilic fungi, secondary metabolites from deep-sea fungi; natural products from fungi in a symbiotic relationship with marine macro-organisms; and bioactive metabolites from sediment-derived fungi. Marine biologists, chemists, and pharmacologists will find the book a good reference material. The book covers various bioactive marine fungal natural products, and it is hoped that this book aids scientists explore fungal chemical diversity.
Research & information: general --- natural products --- extremophilic fungi --- biological activity --- deep-sea derived fungus --- Phialocephala sp. --- nitrogen-containing sorbicillinoids --- radical scavenging activity --- sponge-derived fungus --- Alternaria sp. --- perylenequinone derivatives --- X-ray single crystal diffraction --- cytotoxic activity --- antibacterial --- Phomopsis lithocarpus --- benzophenone derivatives --- eremophilane derivative --- aspochalasin --- tricyclic fused --- gut fungus --- cytotoxicity --- endophytic fungus --- Myrothecium sp. --- meroterpenoids --- isocoumarinoids --- α-glucosidase inhibitors --- salt-resistant plant --- Apocynum venetum --- Fusarium solani H915 --- bis-alkenoic acid esters --- fusaridioic acid A --- fusariumester A1 --- fusariumester A2 --- fusariumester B --- tea pathogenic fungi inhibitory effect --- herqueinones --- phenalenones --- Penicillium sp. --- marine-derived fungi --- adipogenesis --- anti-angiogenesis --- anti-inflammatory --- marine-derived fungus --- Aspergillus versicolor --- diketopiperazine --- anthraquinone derivatives --- Sporendonema casei --- cytotoxic activities --- antibacterial activities
Listing 1 - 8 of 8 |
Sort by
|