Listing 1 - 3 of 3 |
Sort by
|
Choose an application
Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors.An essential primer for undergraduates making the leap to graduate work, the book begins with free groups-actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples.Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.
Geometric group theory. --- "ient. --- 4-valent tree. --- Cantor set. --- Cayley 2-complex. --- Cayley graph. --- Coxeter group. --- DSV method. --- Dehn function. --- Dehn twist. --- Euclidean space. --- Farey complex. --- Farey graph. --- Farey tree. --- Gromov hyperbolicity. --- Klein's criterion. --- Milnor-Schwarz lemma. --- Möbius transformation. --- Nielsen-Schreier Subgroup theorem. --- Perron-Frobenius theorem. --- Riemannian manifold. --- Schottky lemma. --- Thompson's group. --- asymptotic dimension. --- automorphism group. --- automorphism. --- bi-Lipschitz equivalence. --- braid group. --- braids. --- coarse isometry. --- combinatorics. --- compact orientable surface. --- cone type. --- configuration space. --- context-free grammar. --- curvature. --- dead end. --- distortion. --- endomorphism. --- finite group. --- folding. --- formal language. --- free abelian group. --- free action. --- free expansion. --- free group. --- free nonabelian group. --- free reduction. --- generators. --- geometric group theory. --- geometric object. --- geometric space. --- graph. --- group action. --- group element. --- group ends. --- group growth. --- group presentation. --- group theory. --- group. --- homeomorphism. --- homomorphism. --- hyperbolic geometry. --- hyperbolic group. --- hyperbolic space. --- hyperbolicity. --- hyperplane arrangements. --- index. --- infinite graph. --- infinite group. --- integers. --- isoperimetric problem. --- isoperimetry. --- jigsaw puzzle. --- knot theory. --- lamplighter group. --- manifold. --- mapping class group. --- mathematics. --- membership problem. --- metric space. --- non-free action. --- normal subgroup. --- path metric. --- ping-pong lemma. --- ping-pong. --- polynomial growth theorem. --- product. --- punctured disks. --- quasi-isometric equivalence. --- quasi-isometric rigidity. --- quasi-isometry group. --- quasi-isometry invariant. --- quasi-isometry. --- reflection group. --- reflection. --- relators. --- residual finiteness. --- right-angled Artin group. --- robotics. --- semidirect product. --- space. --- surface group. --- surface. --- symmetric group. --- symmetry. --- topological model. --- topology. --- train track. --- tree. --- word length. --- word metric. --- word problem. --- "ient. --- 4-valent tree. --- Cantor set. --- Cayley 2-complex. --- Cayley graph. --- Coxeter group. --- DSV method. --- Dehn function. --- Dehn twist. --- Euclidean space. --- Farey complex. --- Farey graph. --- Farey tree. --- Gromov hyperbolicity. --- Klein's criterion. --- Milnor-Schwarz lemma. --- Möbius transformation. --- Nielsen-Schreier Subgroup theorem. --- Perron-Frobenius theorem. --- Riemannian manifold. --- Schottky lemma. --- Thompson's group. --- asymptotic dimension. --- automorphism group. --- automorphism. --- bi-Lipschitz equivalence. --- braid group. --- braids. --- coarse isometry. --- combinatorics. --- compact orientable surface. --- cone type. --- configuration space. --- context-free grammar. --- curvature. --- dead end. --- distortion. --- endomorphism. --- finite group. --- folding. --- formal language. --- free abelian group. --- free action. --- free expansion. --- free group. --- free nonabelian group. --- free reduction. --- generators. --- geometric group theory. --- geometric object. --- geometric space. --- graph. --- group action. --- group element. --- group ends. --- group growth. --- group presentation. --- group theory. --- group. --- homeomorphism. --- homomorphism. --- hyperbolic geometry. --- hyperbolic group. --- hyperbolic space. --- hyperbolicity. --- hyperplane arrangements. --- index. --- infinite graph. --- infinite group. --- integers. --- isoperimetric problem. --- isoperimetry. --- jigsaw puzzle. --- knot theory. --- lamplighter group. --- manifold. --- mapping class group. --- mathematics. --- membership problem. --- metric space. --- non-free action. --- normal subgroup. --- path metric. --- ping-pong lemma. --- ping-pong. --- polynomial growth theorem. --- product. --- punctured disks. --- quasi-isometric equivalence. --- quasi-isometric rigidity. --- quasi-isometry group. --- quasi-isometry invariant. --- quasi-isometry. --- reflection group. --- reflection. --- relators. --- residual finiteness. --- right-angled Artin group. --- robotics. --- semidirect product. --- space. --- surface group. --- surface. --- symmetric group. --- symmetry. --- topological model. --- topology. --- train track. --- tree. --- word length. --- word metric. --- word problem.
Choose an application
Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. Office Hours with a Geometric Group Theorist brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics. It's like having office hours with your most trusted math professors.An essential primer for undergraduates making the leap to graduate work, the book begins with free groups-actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples.Accessible to students who have taken a first course in abstract algebra, Office Hours with a Geometric Group Theorist also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects.
Geometric group theory. --- "ient. --- 4-valent tree. --- Cantor set. --- Cayley 2-complex. --- Cayley graph. --- Coxeter group. --- DSV method. --- Dehn function. --- Dehn twist. --- Euclidean space. --- Farey complex. --- Farey graph. --- Farey tree. --- Gromov hyperbolicity. --- Klein's criterion. --- Milnor-Schwarz lemma. --- Möbius transformation. --- Nielsen-Schreier Subgroup theorem. --- Perron-Frobenius theorem. --- Riemannian manifold. --- Schottky lemma. --- Thompson's group. --- asymptotic dimension. --- automorphism group. --- automorphism. --- bi-Lipschitz equivalence. --- braid group. --- braids. --- coarse isometry. --- combinatorics. --- compact orientable surface. --- cone type. --- configuration space. --- context-free grammar. --- curvature. --- dead end. --- distortion. --- endomorphism. --- finite group. --- folding. --- formal language. --- free abelian group. --- free action. --- free expansion. --- free group. --- free nonabelian group. --- free reduction. --- generators. --- geometric group theory. --- geometric object. --- geometric space. --- graph. --- group action. --- group element. --- group ends. --- group growth. --- group presentation. --- group theory. --- group. --- homeomorphism. --- homomorphism. --- hyperbolic geometry. --- hyperbolic group. --- hyperbolic space. --- hyperbolicity. --- hyperplane arrangements. --- index. --- infinite graph. --- infinite group. --- integers. --- isoperimetric problem. --- isoperimetry. --- jigsaw puzzle. --- knot theory. --- lamplighter group. --- manifold. --- mapping class group. --- mathematics. --- membership problem. --- metric space. --- non-free action. --- normal subgroup. --- path metric. --- ping-pong lemma. --- ping-pong. --- polynomial growth theorem. --- product. --- punctured disks. --- quasi-isometric equivalence. --- quasi-isometric rigidity. --- quasi-isometry group. --- quasi-isometry invariant. --- quasi-isometry. --- reflection group. --- reflection. --- relators. --- residual finiteness. --- right-angled Artin group. --- robotics. --- semidirect product. --- space. --- surface group. --- surface. --- symmetric group. --- symmetry. --- topological model. --- topology. --- train track. --- tree. --- word length. --- word metric. --- word problem.
Choose an application
The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral theory of the group and the regularity of the averaging sets are formulated, which suffice to guarantee convergence to the ergodic mean. In particular, this approach gives a complete solution to the problem of establishing mean and pointwise ergodic theorems for the natural averages on semisimple algebraic groups and on their discrete lattice subgroups. Furthermore, an explicit quantitative rate of convergence to the ergodic mean is established in many cases. The topic of this volume lies at the intersection of several mathematical fields of fundamental importance. These include ergodic theory and dynamics of non-amenable groups, harmonic analysis on semisimple algebraic groups and their homogeneous spaces, quantitative non-Euclidean lattice point counting problems and their application to number theory, as well as equidistribution and non-commutative Diophantine approximation. Many examples and applications are provided in the text, demonstrating the usefulness of the results established.
Dynamics. --- Ergodic theory. --- Harmonic analysis. --- Lattice theory. --- Lie groups. --- Ergodic theory --- Lie groups --- Lattice theory --- Harmonic analysis --- Dynamics --- Calculus --- Mathematics --- Physical Sciences & Mathematics --- Dynamical systems --- Kinetics --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Lattices (Mathematics) --- Space lattice (Mathematics) --- Structural analysis (Mathematics) --- Groups, Lie --- Ergodic transformations --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Banach algebras --- Mathematical analysis --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Algebra, Abstract --- Algebra, Boolean --- Group theory --- Set theory --- Topology --- Transformations (Mathematics) --- Crystallography, Mathematical --- Lie algebras --- Symmetric spaces --- Topological groups --- Continuous groups --- Mathematical physics --- Measure theory --- Absolute continuity. --- Algebraic group. --- Amenable group. --- Asymptote. --- Asymptotic analysis. --- Asymptotic expansion. --- Automorphism. --- Borel set. --- Bounded function. --- Bounded operator. --- Bounded set (topological vector space). --- Congruence subgroup. --- Continuous function. --- Convergence of random variables. --- Convolution. --- Coset. --- Counting problem (complexity). --- Counting. --- Differentiable function. --- Dimension (vector space). --- Diophantine approximation. --- Direct integral. --- Direct product. --- Discrete group. --- Embedding. --- Equidistribution theorem. --- Ergodicity. --- Estimation. --- Explicit formulae (L-function). --- Family of sets. --- Haar measure. --- Hilbert space. --- Hyperbolic space. --- Induced representation. --- Infimum and supremum. --- Initial condition. --- Interpolation theorem. --- Invariance principle (linguistics). --- Invariant measure. --- Irreducible representation. --- Isometry group. --- Iwasawa group. --- Lattice (group). --- Lie algebra. --- Linear algebraic group. --- Linear space (geometry). --- Lipschitz continuity. --- Mass distribution. --- Mathematical induction. --- Maximal compact subgroup. --- Maximal ergodic theorem. --- Measure (mathematics). --- Mellin transform. --- Metric space. --- Monotonic function. --- Neighbourhood (mathematics). --- Normal subgroup. --- Number theory. --- One-parameter group. --- Operator norm. --- Orthogonal complement. --- P-adic number. --- Parametrization. --- Parity (mathematics). --- Pointwise convergence. --- Pointwise. --- Principal homogeneous space. --- Principal series representation. --- Probability measure. --- Probability space. --- Probability. --- Rate of convergence. --- Regular representation. --- Representation theory. --- Resolution of singularities. --- Sobolev space. --- Special case. --- Spectral gap. --- Spectral method. --- Spectral theory. --- Square (algebra). --- Subgroup. --- Subsequence. --- Subset. --- Symmetric space. --- Tensor algebra. --- Tensor product. --- Theorem. --- Transfer principle. --- Unit sphere. --- Unit vector. --- Unitary group. --- Unitary representation. --- Upper and lower bounds. --- Variable (mathematics). --- Vector group. --- Vector space. --- Volume form. --- Word metric.
Listing 1 - 3 of 3 |
Sort by
|