Listing 1 - 10 of 23 | << page >> |
Sort by
|
Choose an application
Forkhead Transcription Factors. --- Wnt Signaling Pathway. --- Neoplasms.
Choose an application
Choose an application
In 2007, Jeremy Jass proposed a molecular classification of colorectal cancer including KRAS, BRAF, Mismatch Repair, CIMP and MGMT Status. Since then, many prognostic and predictive studies have been published on this topic, mainly focusing on one single molecular marker. The aim of the e-book is to summarize the knowledge in 2014 from a multidisciplinary point of view that can potentially be used as a manual by CRC researchers in every field.
Colon (Anatomy) --- Rectum --- Cancer. --- Molecular classification --- colorectal cancer --- Cdx2 --- MGMT --- ras signaling pathway --- microRNA --- Wnt Signaling Pathway --- telomere length
Choose an application
In 2007, Jeremy Jass proposed a molecular classification of colorectal cancer including KRAS, BRAF, Mismatch Repair, CIMP and MGMT Status. Since then, many prognostic and predictive studies have been published on this topic, mainly focusing on one single molecular marker. The aim of the e-book is to summarize the knowledge in 2014 from a multidisciplinary point of view that can potentially be used as a manual by CRC researchers in every field.
Colon (Anatomy) --- Rectum --- Cancer. --- Molecular classification --- colorectal cancer --- Cdx2 --- MGMT --- ras signaling pathway --- microRNA --- Wnt Signaling Pathway --- telomere length
Choose an application
In 2007, Jeremy Jass proposed a molecular classification of colorectal cancer including KRAS, BRAF, Mismatch Repair, CIMP and MGMT Status. Since then, many prognostic and predictive studies have been published on this topic, mainly focusing on one single molecular marker. The aim of the e-book is to summarize the knowledge in 2014 from a multidisciplinary point of view that can potentially be used as a manual by CRC researchers in every field.
Colon (Anatomy) --- Rectum --- Molecular classification --- colorectal cancer --- Cdx2 --- MGMT --- ras signaling pathway --- microRNA --- Wnt Signaling Pathway --- telomere length --- Cancer.
Choose an application
The cancer stem cell (CSC) paradigm represents one of the most prominent breakthroughs of the last decades in tumor biology. CSCs are that subpopulation within a tumor that can survive conventional therapies and as a consequence are able to fuel tumor recurrence. Nevertheless, the biological characteristics of CSCs and even their existence, remain the main topic among tumor biologists debates. The difficulty in achieving a better definition of CSC biology may actually be explained by the plasticity of such a cell subpopulation. Indeed, the emerging view is that CSCs represent a dynamic “state” of tumor cells that can acquire stemness-related properties under specific circumstances, rather than referring to a well-defined group of cells. Regardless of their origin, it is clear that designing novel antitumor treatments based on the eradication of CSCs will only be possible upon unraveling the biological mechanisms that underlie their pathogenic role in tumor progression and therapy resistance. The Special Issue on “New aspects of cancer stem cell biology: implications for innovative therapies” aims at highlighting recent insights into CSC features that can make them an attractive target for novel therapeutic strategies.
Cadherin 11 --- WNT signaling --- β-catenin --- cancer stem cells --- TNBC --- early breast cancer --- bevacizumab --- neoadjuvant chemotherapy --- ALDH1 --- solid cancer --- chemo-resistance --- HDAC inhibitors --- head and neck squamous cell carcinoma --- SRC --- dasatinib --- saracatinib --- EC-8042 --- Ovarian cancer --- Wnt signaling --- tumor progression --- therapy resistance --- exosomes --- oral cancer risk --- oral epithelial dysplasia --- SOX2 --- immunohistochemistry --- oral squamous cell carcinoma --- genome-wide --- transcriptome --- lung cancer --- ATAC-seq --- RNA-seq --- CSCs --- NSCLC --- B4GALT1 --- LUAD --- breast cancer --- lipid --- metabolism --- therapeutic resistance --- bowel cancer --- organoid --- tumoroid --- colorectal --- colon --- stem cell --- chemotherapy resistance --- ovarian cancer --- cancer stem cell --- genetic heterogeneity --- SNP array --- L1CAM --- chemoresistance --- epithelial-mesenchymal transition --- cancer therapy --- cell adhesion molecule
Choose an application
The cancer stem cell (CSC) paradigm represents one of the most prominent breakthroughs of the last decades in tumor biology. CSCs are that subpopulation within a tumor that can survive conventional therapies and as a consequence are able to fuel tumor recurrence. Nevertheless, the biological characteristics of CSCs and even their existence, remain the main topic among tumor biologists debates. The difficulty in achieving a better definition of CSC biology may actually be explained by the plasticity of such a cell subpopulation. Indeed, the emerging view is that CSCs represent a dynamic “state” of tumor cells that can acquire stemness-related properties under specific circumstances, rather than referring to a well-defined group of cells. Regardless of their origin, it is clear that designing novel antitumor treatments based on the eradication of CSCs will only be possible upon unraveling the biological mechanisms that underlie their pathogenic role in tumor progression and therapy resistance. The Special Issue on “New aspects of cancer stem cell biology: implications for innovative therapies” aims at highlighting recent insights into CSC features that can make them an attractive target for novel therapeutic strategies.
Research & information: general --- Biology, life sciences --- Cadherin 11 --- WNT signaling --- β-catenin --- cancer stem cells --- TNBC --- early breast cancer --- bevacizumab --- neoadjuvant chemotherapy --- ALDH1 --- solid cancer --- chemo-resistance --- HDAC inhibitors --- head and neck squamous cell carcinoma --- SRC --- dasatinib --- saracatinib --- EC-8042 --- Ovarian cancer --- Wnt signaling --- tumor progression --- therapy resistance --- exosomes --- oral cancer risk --- oral epithelial dysplasia --- SOX2 --- immunohistochemistry --- oral squamous cell carcinoma --- genome-wide --- transcriptome --- lung cancer --- ATAC-seq --- RNA-seq --- CSCs --- NSCLC --- B4GALT1 --- LUAD --- breast cancer --- lipid --- metabolism --- therapeutic resistance --- bowel cancer --- organoid --- tumoroid --- colorectal --- colon --- stem cell --- chemotherapy resistance --- ovarian cancer --- cancer stem cell --- genetic heterogeneity --- SNP array --- L1CAM --- chemoresistance --- epithelial-mesenchymal transition --- cancer therapy --- cell adhesion molecule
Choose an application
Dysregulation of Wnt signaling is known to be associated with various cancers. As such, identification of novel Wnt pathway targets in cancer and better characterization of already-known targets present exciting, emerging opportunities for cancer treatment. In this Special Issue, we feature papers which discuss the role of Wnt signaling and associated targets in cancer metabolism, tumor immune response, and tumor microenvironment. Papers discussing a range of Wnt-mediated cancers, including those of the colon, liver, pancreas, synovium, bladder, etc., are included.
Wnt signaling --- synovial sarcoma --- TNIK --- NCB-0846 --- MYC --- hepatitis B virus --- HBV --- cancer --- liver cancer --- β-catenin --- TCF/LEF --- pancreatic cancer --- pancreatic stellate cells --- CBP --- p300 --- pancreatitis --- fibrosis --- just-right signaling --- APC --- colorectal cancer --- RNA-binding proteins --- Musashi --- drug discovery --- Notch signaling --- cancer therapy --- fungi secondary metabolite derivative --- microenvironment --- Wnt --- AML --- drug target --- signaling --- colorectal --- porcupine --- R-spondin --- serrated --- immunotherapy --- wnt --- vitamin D --- colon cancer --- L1 --- Wnt target genes --- cell adhesion --- NF-κB --- invasion and metastasis --- cancer stem cells --- EMT --- Lgr5 --- Wnt/beta-catenin signaling --- angiogenesis --- anti-angiogenic therapy --- gastrointestinal cancers --- therapeutic targeting of Wnt signaling --- β-catenin paradox --- molecular targeting --- urothelial cancer --- immune checkpoint inhibitor --- immunotherapy resistance --- IBD --- colitis --- β-catenin mutations --- tumor metabolism --- tumor immunology --- molecular therapeutics --- precision medicine --- astrocytic brain tumors --- DKKs --- GSK3β
Choose an application
Dysregulation of Wnt signaling is known to be associated with various cancers. As such, identification of novel Wnt pathway targets in cancer and better characterization of already-known targets present exciting, emerging opportunities for cancer treatment. In this Special Issue, we feature papers which discuss the role of Wnt signaling and associated targets in cancer metabolism, tumor immune response, and tumor microenvironment. Papers discussing a range of Wnt-mediated cancers, including those of the colon, liver, pancreas, synovium, bladder, etc., are included.
Medicine --- Pharmacology --- Wnt signaling --- synovial sarcoma --- TNIK --- NCB-0846 --- MYC --- hepatitis B virus --- HBV --- cancer --- liver cancer --- β-catenin --- TCF/LEF --- pancreatic cancer --- pancreatic stellate cells --- CBP --- p300 --- pancreatitis --- fibrosis --- just-right signaling --- APC --- colorectal cancer --- RNA-binding proteins --- Musashi --- drug discovery --- Notch signaling --- cancer therapy --- fungi secondary metabolite derivative --- microenvironment --- Wnt --- AML --- drug target --- signaling --- colorectal --- porcupine --- R-spondin --- serrated --- immunotherapy --- wnt --- vitamin D --- colon cancer --- L1 --- Wnt target genes --- cell adhesion --- NF-κB --- invasion and metastasis --- cancer stem cells --- EMT --- Lgr5 --- Wnt/beta-catenin signaling --- angiogenesis --- anti-angiogenic therapy --- gastrointestinal cancers --- therapeutic targeting of Wnt signaling --- β-catenin paradox --- molecular targeting --- urothelial cancer --- immune checkpoint inhibitor --- immunotherapy resistance --- IBD --- colitis --- β-catenin mutations --- tumor metabolism --- tumor immunology --- molecular therapeutics --- precision medicine --- astrocytic brain tumors --- DKKs --- GSK3β
Choose an application
Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. Indeed, the decellularization method aims to develop a cell-free biologic scaffold while keeping the extracellular matrix (ECM) intact. Furthermore, biologic scaffolds have been investigated for their in vitro potential for whole organ development. Currently, clinical products composed of decellularized matrices, such as pericardium, urinary bladder, small intestine, heart valves, nerve conduits, trachea, and vessels, are being evaluated for use in human clinical trials. Tissue engineering strategies require the interaction of biologic scaffolds with cellular populations. Among them, stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. Under this scheme, stem cells can be isolated from patients, expanded under good manufacturing practices (GMPs), used for the repopulation of biologic scaffolds and, finally, returned to the patient. The interaction between scaffolds and stem cells is thought to be crucial for their infiltration, adhesion, and differentiation into specific cell types. In addition, biomedical devices such as bioreactors contribute to the uniform repopulation of scaffolds. Until now, remarkable efforts have been made by the scientific society in order to establish the proper repopulation conditions of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of “artificial” tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds and thus bringing them one step closer to personalized medicine. The original research articles and comprehensive reviews in this Special Issue deal with the use of stem cells and biologic scaffolds that utilize state-of-the-art tissue engineering and regenerative medicine approaches.
nerve conduit --- tissue engineering --- regenerative medicine --- mixed lymphocyte reaction --- histological images --- future scaffold engineering --- multiparameter --- 3DPVS --- MSCs --- Wnt signaling --- Mesenchymal Stromal Cells --- factorial design --- novel scaffold --- Wharton’s Jelly tissue --- stem cells --- umbilical arteries --- SDS --- platelet rich plasma --- TGF? signaling --- traditional scaffold --- pluripotency and commitment --- tissue engineered construct --- HLA-G --- CHAPS --- platelets --- proteomic analysis --- vibrating nature of universe. --- VS55 --- cell culture --- FGF signaling --- evolution of scaffold --- dynamicity and dimensionality --- fibrin gel --- scaffold classification --- decellularization --- vitrification --- seven-folder logics --- IIEF-5 questionnaire --- TGF-?1 --- erectile dysfunction --- human induced pluripotent stem cells --- iPSCs --- scaffolds --- Barret’s esophagus --- nerve regeneration --- long term storage --- laws of system evolution --- scaffold categorization --- platelet lysate --- 3D scaffold --- esophagus --- language of relativity --- cord blood units
Listing 1 - 10 of 23 | << page >> |
Sort by
|