Narrow your search

Library

UGent (5)


Resource type

article (5)


Language

Undetermined (5)


Year
From To Submit

2004 (3)

2003 (1)

1999 (1)

Listing 1 - 5 of 5
Sort by

Article
Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Maternal care in the rat influences the development of cognitive function in the offspring through neural systems known to mediate activity-dependent synaptic plasticity. The offspring of mothers that exhibit increased levels of pup licking/grooming (high-LG mothers) show increased hippocampal N-methyl-D-aspartate (NMDA) subunit mRNA expression, enhanced synaptogenesis and improved hippocampal-dependent spatial learning in comparison with animals reared by low-LG mothers. The effects of reduced maternal care on cognitive function are reversed with peripubertal environmental enrichment; however, the neural mechanisms mediating this effect are not known. In these studies we exposed the offspring of high- and low-LG mothers to environmental enrichment from days 22 to 70 of life, and measured the expression of genes encoding for glutamate receptor subunits and synaptophysin expression as a measure of synaptic density. Environmental enrichment reversed the effects of maternal care on synaptic density and this effect was, in turn, associated with a reversal of the effect of maternal care on the NR2A and NR2B subunits of the NMDA receptor, as well as effects on (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits. Finally, direct infusion of an NR2B-specific NMIDA receptor antagonist into the hippocampus eliminated the effects of maternal care on spatial learning/memory in the Morris water maze. These findings suggest that: (1) the effects of maternal care are mediated by changes in NR2B gene expression; and (2) that environmental enrichment reverses the effects of reduced maternal care through the same genomic target, the NR2B gene, and possibly effects on other subunits of the NMIDA and AMPA receptors


Article
Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats.

Loading...
Export citation

Choose an application

Bookmark

Abstract

During aging, reductions in hippocampal neurogenesis are associated with memory decline indicating a causal relationship. Indeed, insulin-like growth factor-1 (IGF-1), a major activator of the extracellular receptor kinase pathway that is central in learning and memory processes, is also a key modulator of hippocampal neurogenesis. Previously, we showed that age-related declines in spatial memory tasks can be improved by antioxidant-rich diets containing blueberries. In this study, to begin to understand the mechanisms responsible for the beneficial effects of blueberries, we assessed changes in hippocampal plasticity parameters such as hippocampal neurogenesis, extracellular receptor kinase activation, and IGF-1 and IGF-1R levels in blueberry-supplemented aged animals. Our results show that all these parameters of hippocampal neuronal plasticity are increased in supplemented animals and aspects such as proliferation, extracellular receptor kinase activation and IGF-1 and IGF-1R levels correlate with improvements in spatial memory. Therefore, cognitive improvements afforded by polyphenolic-rich fruits such as blueberries appear, in part, to be mediated by their effects on hippocampal plasticity


Article
Environmental enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Abstract Cognitive impairment is common after ischemic stroke. In rodent stroke models using occlusion of the middle cerebral artery (MCA) this is reflected by impaired spatial memory associated with the size of the ischemic lesion. Housing in an enriched environment enhances brain plasticity and improves recovery of sensorimotor functions after experimental stroke in rats. In this study we report that postischemic housing in an enriched environment also attenuates the long-term spatial memory impairment after MCA occlusion and extinguishes the association between spatial memory and infarct volume. An enriched environment did not significantly alter the expression of selected neuronal plasticity-associated genes 1month after MCA occlusion, indicating that most of the adaptive changes induced by an enriched environment have already occurred at this time point. We conclude that the attenuated memory impairment induced by environmental enrichment after MCA occlusion provides a useful model for further studies on the neurobiological mechanisms of recovery of cognitive functions after ischemic stroke


Article
Partial reversal of the effect of maternal care on cognitive function through environmental enrichment.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Maternal care influences hippocampal development in the rat. The offspring of mothers that exhibit increased levels of pup licking/grooming and arched-back nursing (High LG-ABN mothers) show increased hippocampal N-methyl-D-aspartate (NMDA) receptor binding and enhanced hippocampal-dependent spatial learning. In these studies we examined whether environmental enrichment from days 22-70 of life might reverse the effects of low maternal care. Environmental enrichment eliminated the differences between the offspring of High and Low LG-ABN mothers in both Morris water maze learning and object recognition. However, enrichment did not reverse the effect of maternal care on long-term potentiation in the dentate gyrus or on hippocampal NMDA receptor binding. In contrast, peripubertal enrichment did reverse the effects of maternal care on hippocampal a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor binding. These findings provide evidence for the reversal of the effects of reduced maternal investment in early life on cognitive function in adulthood. Such effects might involve compensatory changes associated with peripubertal enrichment. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved


Article
Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective.
Authors: --- --- --- ---
Year: 1999

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mammalian brain has a high degree of plasticity, with dentate granule cell neurogenesis(1) and glial(2,3) proliferation stimulated by an enriched environment combining both complex inanimate and social stimulation. Moreover, rodents exposed to an enriched environment both before and after a cerebral insult show improved cognitive performance(1,4). One of the most robust associations of environmental enrichment is improved learning and memory in the Morris water maze, a spatial task that mainly involves the hippocampus(5). Furthermore, clinical evidence showing an association between higher educational attainment and reduced risk of Alzheimer(6) and Parkinson-related dementia(7) indicates that a stimulating environment has positive effects on cerebral health that may provide some resilience to cerebral insults. Here we show that in addition to its effects on neurogenesis, an enriched environment reduces spontaneous apoptotic cell death in the rat hippocampus by 45%. Moreover, these environmental conditions protect against kainate-induced seizures and excitotoxic injury. The enriched environment induces expression of glial-derived neurotrophic factor and brain-derived neurotrophic factor and increases phosphorylation of the transcription factor cyclic-AMP response element binding protein, indicating that the; influence of the environment on spontaneous apoptosis and cerebral resistance to insults may be mediated through transcription factor activation and induction of growth factor expression

Listing 1 - 5 of 5
Sort by