Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (3)

2015 (3)

Listing 1 - 6 of 6
Sort by

Book
Photonic Integration and Photonics-Electronics Convergence on Silicon Platform
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.


Book
Photonic Integration and Photonics-Electronics Convergence on Silicon Platform
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.


Book
Photonic Integration and Photonics-Electronics Convergence on Silicon Platform
Authors: --- --- --- ---
Year: 2015 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.


Book
MEMS Packaging Technologies and 3D Integration
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue introduces recent research results on MEMS packaging and 3D integration whose subjects can be divided as follow; three papers on biocompatible implantable packaging, three papers on interconnect, three papers on bonding technologies, one paper on vacuum packaging, and three papers on modeling and simulation.

Keywords

Research & information: general --- Biology, life sciences --- heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation --- n/a


Book
MEMS Packaging Technologies and 3D Integration
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue introduces recent research results on MEMS packaging and 3D integration whose subjects can be divided as follow; three papers on biocompatible implantable packaging, three papers on interconnect, three papers on bonding technologies, one paper on vacuum packaging, and three papers on modeling and simulation.

Keywords

Research & information: general --- Biology, life sciences --- heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation --- n/a


Book
MEMS Packaging Technologies and 3D Integration
Author:
Year: 2022 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue introduces recent research results on MEMS packaging and 3D integration whose subjects can be divided as follow; three papers on biocompatible implantable packaging, three papers on interconnect, three papers on bonding technologies, one paper on vacuum packaging, and three papers on modeling and simulation.

Keywords

heterogeneous integration --- wafer bonding --- wafer sealing --- room-temperature bonding --- Au-Au bonding --- surface activated bonding --- Au film thickness --- surface roughness --- microelectromechanical systems (MEMS) packaging --- inkjet printing --- redistribution layers --- capacitive micromachined ultrasound transducers (CMUT) --- fan-out wafer-level packaging (FOWLP) --- adhesion --- thin film metal --- parylene --- neural probe --- scotch tape test --- FEM --- MEMS resonator --- temperature coefficient --- thermal stress --- millimeter-wave --- redundant TSV --- equivalent circuit model --- S-parameters extraction --- technology evaluation --- MEMS and IC integration --- MCDM --- fuzzy AHP --- fuzzy VIKOR --- fan-out wafer-level package --- finite element --- glass substrate --- reliability life --- packaging-on-packaging --- thermal sensors --- TMOS sensor --- finite difference time domain --- optical and electromagnetics simulations --- finite element analysis --- ultrasonic bonding --- metal direct bonding --- microsystem integration --- biocompatible packaging --- implantable --- reliability --- Finite element method (FEM) --- simulation --- multilayer reactive bonding --- integrated nanostructure-multilayer reactive system --- spontaneous self-ignition --- self-propagating exothermic reaction --- Pd/Al reactive multilayer system --- Ni/Al reactive multilayer system --- low-temperature MEMS packaging --- crack propagation --- microbump --- deflection angle --- stress intensity factor (SIF) --- polymer packaging --- neural interface --- chronic implantation --- n/a

Listing 1 - 6 of 6
Sort by