Narrow your search

Library

FARO (4)

KU Leuven (4)

LUCA School of Arts (4)

Odisee (4)

Thomas More Kempen (4)

Thomas More Mechelen (4)

UCLL (4)

ULB (4)

ULiège (4)

VIVES (4)

More...

Resource type

book (8)


Language

English (8)


Year
From To Submit

2022 (6)

2020 (1)

2019 (1)

Listing 1 - 8 of 8
Sort by

Book
Polymer Materials in Environmental Chemistry
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book entitled “Polymer Materials in Environmental Chemistry” focuses on functionalized natural/synthetic polymeric materials and their preparation, characterization, and multidimensional applications. This book extensively appraises the research papers on the latest developments of the functionalized natural/synthetic polymers, such as the effect of functionalized polymeric additives on the degradation of aliphatic polyesters, development of nanoparticle functionalized bio-based or composite polymeric structures, water or wastewater purification, natural fibers or clay-based hybrid polymers and their applications, environmental remediation of antibiotics and dyes using polymer-based nanofibers, bio-based polymeric conjugate for the synthesis of bimetallic nanoparticles and their catalytic degradation of ecological pollutant, polymeric-grafted membranes based on ethyl cellulose for gas separation, and polyamide–laccase nanofiber membranes for the degradation of organic and antibiotics from water. Additionally, the book envisages the reviews on recent developments in the techniques and visualization of biopolymer structures and their derivatives and fabrication and characterization of polymeric nanofibers via multidimensional electrospinning techniques and their appliances in environmental pollutant removal.


Book
Polymer Materials in Environmental Chemistry
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book entitled “Polymer Materials in Environmental Chemistry” focuses on functionalized natural/synthetic polymeric materials and their preparation, characterization, and multidimensional applications. This book extensively appraises the research papers on the latest developments of the functionalized natural/synthetic polymers, such as the effect of functionalized polymeric additives on the degradation of aliphatic polyesters, development of nanoparticle functionalized bio-based or composite polymeric structures, water or wastewater purification, natural fibers or clay-based hybrid polymers and their applications, environmental remediation of antibiotics and dyes using polymer-based nanofibers, bio-based polymeric conjugate for the synthesis of bimetallic nanoparticles and their catalytic degradation of ecological pollutant, polymeric-grafted membranes based on ethyl cellulose for gas separation, and polyamide–laccase nanofiber membranes for the degradation of organic and antibiotics from water. Additionally, the book envisages the reviews on recent developments in the techniques and visualization of biopolymer structures and their derivatives and fabrication and characterization of polymeric nanofibers via multidimensional electrospinning techniques and their appliances in environmental pollutant removal.


Book
Polymer Materials in Environmental Chemistry
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book entitled “Polymer Materials in Environmental Chemistry” focuses on functionalized natural/synthetic polymeric materials and their preparation, characterization, and multidimensional applications. This book extensively appraises the research papers on the latest developments of the functionalized natural/synthetic polymers, such as the effect of functionalized polymeric additives on the degradation of aliphatic polyesters, development of nanoparticle functionalized bio-based or composite polymeric structures, water or wastewater purification, natural fibers or clay-based hybrid polymers and their applications, environmental remediation of antibiotics and dyes using polymer-based nanofibers, bio-based polymeric conjugate for the synthesis of bimetallic nanoparticles and their catalytic degradation of ecological pollutant, polymeric-grafted membranes based on ethyl cellulose for gas separation, and polyamide–laccase nanofiber membranes for the degradation of organic and antibiotics from water. Additionally, the book envisages the reviews on recent developments in the techniques and visualization of biopolymer structures and their derivatives and fabrication and characterization of polymeric nanofibers via multidimensional electrospinning techniques and their appliances in environmental pollutant removal.


Book
Processing-Structure-Properties Relationships in Polymers
Author:
ISBN: 3039218816 3039218808 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This collection of research and review papers is aimed at depicting the state of the art on the possible correlations between processing variables, obtained structure and special properties which this structure induces on the plastic part. The extraordinary capacity of plastics to modify their properties according to a particular structure is evidenced for several transformation processes and for many applications. The final common goal is to take profit of this peculiar capacity of plastics by inducing, through a suitable processing, a specific spatial organization.

Keywords

polymer blend --- carbon nanotube --- polycaprolactone --- X-ray diffraction --- reactive blending --- copper clad laminate --- incremental forming --- uniaxial compression --- fatigue --- nanoparticles --- composite --- deformation --- polymer composite --- humidity --- model --- uniaxial tensile deformation --- injection molding --- SPIF --- bioresorbable polymers --- flow --- poly(ethylene terephthalate) --- morphology --- 3D printing/additive manufacturing --- supercritical CO2 --- polymer morphology --- tissue engineering and regenerative medicine --- microfibrillar composites --- polyamide 6 --- ultra-high molecular weight polyethylene --- chain orientation --- processing --- intrinsic viscosity --- conductive polymer composites --- microcellular injection molding --- ionic liquids --- poly(?-caprolactone) --- biaxial elongation --- biobased films --- crystalline morphology --- gel --- composites --- PLLA --- bioresorbable vascular scaffolds --- temperature --- layered double hydroxides --- epoxy microstructure --- nanoreinforcement --- shear --- collagen --- controllable gas permeability --- contact angle --- WAXS --- mechanical performance --- biodegradable nanofibers --- in situ X-ray --- foam --- polyolefin --- carbon black --- polymorphism --- degradation --- polypropylene --- XRD --- graphite --- polyimide film --- indentation --- ultra-high molecular weight polyethylene (UHMWPE) --- mold temperature evolution --- fused filament fabrication/fused deposition modelling --- polyvinyl butyral --- supercritical fluid --- conductive filler --- octakis[(3-glycidoxypropyl)dimethylsiloxy]octasilsesquioxane (GPOSS) --- supercritical N2 --- compression molding --- flame retardant --- epinephrine --- crystallinity --- ethylene vinyl acetate --- atomic force microscopy --- temperature sensitive --- mechanical properties --- crystallisation --- microencapsulation --- linear coefficient of thermal expansion (CTE) --- structure and properties --- PLA --- isotactic polypropylene --- lidocaine --- graphene --- structural analysis --- critical gel --- Harmonix AFM --- physicochemical characterization --- polyurethane --- cavitation --- curing rate --- orientation --- breathable film --- stress-induced phase transitions --- phase transitions --- SAXS --- hydrophobicity --- melamine polyphosphate --- PLGA --- compatibilizer --- polyoxymethylene (POM) --- homogeneous dispersion --- stretch blow molding --- electrical conductivity --- poly(lactic acid)


Book
X-ray Diffraction of Functional Materials
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Demand for advanced X-ray scattering techniques has increased tremendously in recent years with the development of new functional materials. These characterizations have a huge impact on evaluating the microstructure and structure–property relation in functional materials. Thanks to its non-destructive character and adaptability to various environments, the X-ray is a powerful tool, being irreplaceable for novel in situ and operando studies. This book is dedicated to the latest advances in X-ray diffraction using both synchrotron radiation as well as laboratory sources for analyzing the microstructure and morphology in a broad range (organic, inorganic, hybrid, etc.) of functional materials.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate)


Book
X-ray Diffraction of Functional Materials
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Demand for advanced X-ray scattering techniques has increased tremendously in recent years with the development of new functional materials. These characterizations have a huge impact on evaluating the microstructure and structure–property relation in functional materials. Thanks to its non-destructive character and adaptability to various environments, the X-ray is a powerful tool, being irreplaceable for novel in situ and operando studies. This book is dedicated to the latest advances in X-ray diffraction using both synchrotron radiation as well as laboratory sources for analyzing the microstructure and morphology in a broad range (organic, inorganic, hybrid, etc.) of functional materials.

Keywords

lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate)


Book
X-ray Diffraction of Functional Materials
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Demand for advanced X-ray scattering techniques has increased tremendously in recent years with the development of new functional materials. These characterizations have a huge impact on evaluating the microstructure and structure–property relation in functional materials. Thanks to its non-destructive character and adaptability to various environments, the X-ray is a powerful tool, being irreplaceable for novel in situ and operando studies. This book is dedicated to the latest advances in X-ray diffraction using both synchrotron radiation as well as laboratory sources for analyzing the microstructure and morphology in a broad range (organic, inorganic, hybrid, etc.) of functional materials.

Keywords

Technology: general issues --- History of engineering & technology --- Materials science --- lead-free ceramic --- sol–gel process --- barium zirconate titanate --- dielectric property --- conjugated polymer and blends --- in situ GIXD --- additive --- structure --- strain --- X-ray diffraction --- piezoelectric properties --- lanthanum-modified lead zirconate titanate (PLZT) --- zeolite-W --- cation form --- synchrotron X-ray diffraction --- Rietveld refinement --- high-pressure --- smectite --- bulk moduli --- anhydrous and hydrous environments --- synchrotron X-ray powder diffraction --- pressure-transmitting media --- metallic composites --- Ni --- Ni-W alloys --- silver-exchanged natrolite --- pressure-induced insertion --- high energy-density materials --- high pressure and temperature --- Raman spectroscopy --- ammonium azide --- polynitrogen compounds --- superalloys --- low-angle boundaries --- X-ray topography --- turbine blades --- crystal growth --- nano-perovskite (CaTiO3) --- Young’s modulus --- ultrasonic-pulse echo --- planar density --- residual stress --- laser cavitation peening --- pulse laser --- wedge-shaped amphiphile --- double gyroid phase --- grazing-incidence X-ray scattering --- environmental atomic force microscopy --- vapor annealing --- Williamson-Hall (W-H) --- uniform stress deformation model (USDM) --- hydroxyapatite --- ultrasonic pulse-echo --- thermoplastic polyurethane ureas --- shape memory materials --- synchrotron SAXS/WAXS --- polymer deformation --- lamellar morphology --- poly-ε-caprolactone --- poly(1,4-butylene adipate)


Book
Bio-Based Polymers for Engineered Green Materials
Authors: ---
ISBN: 3039289268 303928925X Year: 2020 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

With daily signals, Nature is communicating us that its unconscious wicked exploitation is no more sustainable. Our socio-economic system focuses on production increasing without considering the consequences. We are intoxicating ourselves on a daily bases just to allow the system to perpetuate itself. The time to switch into more natural solutions is come and the scientific community is ready to offer more natural product with comparable performance then the market products we are used to deal with. This book collects a broad set of scientific examples in which research groups from all over the world, aim to replace fossil fuel-based solutions with biomass derived materials. In here, some of the most innovative developments in the field of bio-materials are reported considering topics which goes from biomass valorization to the synthesis of high preforming bio-based materials.

Keywords

chitosan --- graphene oxide --- microstructure --- autoxidation --- heavy metals --- polycaprolactone --- precipitation --- thermosetting polymers --- thermal degradation --- humidity sensor --- asphalt rubber --- tung oil --- nanobiocomposites --- ionic liquid --- GC-MS --- hybrid nonisocyanate polyurethane --- physicochemical properties --- alginate sponge --- Bioflex --- dimer acid --- bio-asphalt --- benzoyl cellulose --- Peptone --- transparent wood --- biocomposite --- nanoclays --- storage stability --- solvent- and catalyst-free --- microcellulose fiber --- lignin-containing cellulose nanofibrils --- polylactic acid (PLA) --- bio-inspired interfaces --- polyhydroxyalkanoates --- strain sensor --- enzymatic saccharification --- headspace solid phase microextraction --- PHBV --- electrical resistance --- melt condensation --- cement --- solution casting --- orange waste --- hybrid composites --- biopolymers --- TEMPO oxidation --- pollutant adsorbents --- Escherichia coli --- bio-nanocomposites --- TiO2 anatase --- metal binding --- liquid natural rubber --- hydrotropic treatment --- metal chloride --- feast-famine --- biomass resources --- wood --- electroless deposition --- one-pot synthesis --- thermoplastic starch --- films --- lignin-carbohydrate complex --- cellulose --- corn starch --- microencapsulated phase change material (MPCM) --- differential scanning calorimetry --- compatibility --- natural fibers --- workability --- silkworm cocoons --- lignin content --- polylactic acid --- porous structure --- electrospinning --- nanocellulose fibers --- H2O2 bleaching treatment --- polysaccharides --- mixing sequence --- porosity --- lignocellulosic nanofibrils --- dense structure --- alkali lignin --- polydopamine coating --- nuclear magnetic resonance --- cationic dyes --- poly(lactic acid) and composite films --- endothermic effect --- HSQC-NMR --- Microbial nutrient --- n/a --- toughening --- X-ray diffraction --- water resistance --- waste biomass --- lignin --- UV light --- ultrafiltration --- two-step lyophilization --- mechanical degradation --- bio-based --- methylene blue --- stearoyl cellulose --- ONP fibers --- anionic surfactants --- Hatscheck process --- osteoblast proliferation --- resource recovery --- dissolution --- copper coating --- bacterial cellulose --- hydrogel --- iron chelation --- knotwood --- sensitivity --- mixed microbial cultures --- dimensional stability --- volatiles --- lignocellulose --- Artemisia vulgaris --- surface modification --- PHA --- crosslinked microparticles --- pyrene --- composites --- galactoglucomannan --- polymeric composites --- kaempferol --- tannin-furanic foam --- Solanyl --- wastewater treatments --- adsorption capacity --- heat treatment --- thermal gravimetric analysis --- WAXS --- unsaturated polyester resins --- pulp fibers --- free-radical polymerization --- larixol --- delignification --- antifouling --- chemical composition --- hemicellulose --- tissue engineering --- extrusion-compounding --- membrane --- photodegradation --- structural plastics --- scanning electron microscope --- phenanthrene --- thermal properties --- immobilized TEMPO --- Staphylococcus aureus --- adsorption --- wood modification --- structure–property relationship --- physical property --- film --- mechanical properties --- tannin --- Bio-based foams --- latex state --- paper-based scaffolds --- skincare --- pyrolysis mechanism --- emulsion-solvent evaporation method --- bioplastics --- imidazolium --- fractionation --- cost --- fiber-cement --- lyocell fiber --- recycling --- kenaf fiber --- thermal stability --- transport properties --- SAXS --- silanization --- cellulose nanofibers --- taxifolin --- tannin polymer --- vibrational spectroscopy --- robust fiber network --- nanocelluloses --- poly(lactic acid) --- Anti-bacterial silver nanoparticle --- cellulose nanocrystals --- structure-property relationship

Listing 1 - 8 of 8
Sort by