Listing 1 - 10 of 10 |
Sort by
|
Choose an application
“Engineering Fluid Dynamics 2018”. The topic of engineering fluid dynamics includes both experimental as well as computational studies. Of special interest were submissions from the fields of mechanical, chemical, marine, safety, and energy engineering. We welcomed both original research articles as well as review articles. After one year, 28 papers were submitted and 14 were accepted for publication. The average processing time was 37.91 days. The authors had the following geographical distribution: China (9); Korea (3); Spain (1); and India (1). Papers covered a wide range of topics, including analysis of fans, turbines, fires in tunnels, vortex generators, deep sea mining, as well as pumps.
fluid structure interaction (FSI) --- numerical methods --- axial gap --- impeller --- radiation noise --- natural ventilation --- ventilation performance --- Computational Fluid Dynamics (CFD) --- experimental research --- hot streak --- disc thickness --- fire --- circumferential groove casing treatment --- blade wrap angle --- sweep and lean --- computational fluid dynamics (CFD) --- OpenFOAM --- gas turbine --- fire propagation --- disc spacing distance --- hydraulic collecting --- thermosyphon --- wind tunnel --- flow control --- source term --- leading edge --- flow around cylinder --- vortex generators --- plug-holing --- noise spectrum --- CGCT-blade integrated optimization --- dimensional analysis --- deep sea mining --- heat transfer --- abnormal blade installation angle --- axial fan --- rotating stall --- optimized design --- orthogonal test --- fluid dynamics --- simulation and modeling --- aerodynamic noise --- centrifugal pump --- suction flow field --- two-stage axial fan --- cavitation inception --- evaporation and condensation --- numerical simulation --- CFD simulation --- aspect ratio --- evacuation --- tunnel slope --- Tesla turbine --- vortex induced vibration (VIV) ratio --- global optimization --- volume of fluid --- blade exit angle --- acoustic energy --- tunnel vehicle fire --- multiphase flow --- distribution characteristic --- unsteady heat release rate --- hydrodynamic response --- manganese nodules exploitation --- isentropic efficiency
Choose an application
With the advances in high-speed computer technology, complex heat transfer and fluid flow problems can be solved computationally with high accuracy. Computational modeling techniques have found a wide range of applications in diverse fields of mechanical, aerospace, energy, environmental engineering, as well as numerous industrial systems. Computational modeling has also been used extensively for performance optimization of a variety of engineering designs. The purpose of this book is to present recent advances, as well as up-to-date progress in all areas of innovative computational heat transfer and fluid mechanics, including both fundamental and practical applications. The scope of the present book includes single and multiphase flows, laminar and turbulent flows, heat and mass transfer, energy storage, heat exchangers, respiratory flows and heat transfer, biomedical applications, porous media, and optimization. In addition, this book provides guidelines for engineers and researchers in computational modeling and simulations in fluid mechanics and heat transfer.
Technology: general issues --- History of engineering & technology --- auxiliary feedwater system --- cavitation --- computational fluid dynamics --- in-service testing --- multiphase flow --- multi-stage orifice --- nonuniform metal foam --- melting heat transfer --- thermal energy storage --- conical swirl atomizer --- atomization --- CFD --- Eulerian model --- heat transfer coefficient --- micro-fins --- friction factor --- numerical methods --- micro- and macro-parameters of the atomized liquid --- mechanism of effervescent-swirl atomization --- efficiency of atomization process --- effervescent-swirl atomizer --- fixed-bed reactor --- wall structures --- complex particle shapes --- process intensification --- heat transfer --- photovoltaic cell efficiency --- thermal regulation --- energy and light harvesting --- irreversibility losses --- quantum dynamics --- nature-inspired mimicking --- heat transfer enhancement --- radiation insert --- numerical simulations --- performance evaluation criteria --- thermal efficiency --- particle sedimentation --- resistance force --- fractional-order integro-differential equation --- laplace transform --- Mittag–Leffler function --- block-pulse operational matrix --- Nu number --- microchannel heat sink --- trefoil ribs --- thermal enhancement --- thermal resistance --- triple-tube heat exchanger --- twisted fin array --- phase change material --- solidification --- nanofluids advantages and disadvantages --- thermal hydraulic performance --- vortex generators --- micro-channel
Choose an application
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.
numerical methods --- modeling --- aerodynamics --- Taylor–Green vortex --- slender-body --- neural networks --- shock-channel --- wind gust responses --- installed propeller --- bifurcation --- RANS --- wake --- multi-directional --- bluff body --- MDO --- variable fidelity --- computational fluid dynamics (CFD) --- high angles of attack --- aeroelasticity --- computational fluid dynamics --- wind tunnel --- Godunov method --- flow control --- unsteady aerodynamic characteristics --- overset grid approach --- convolution integral --- MUSCL --- DDES --- dynamic Smagorinsky subgrid-scale model --- CPACS --- flutter --- reduced-order model --- meshing --- vortex generators --- hybrid reduced-order model --- microfluidics --- Riemann solver --- characteristics-based scheme --- CFD --- wing–propeller aerodynamic interaction --- kinetic energy dissipation --- Euler --- formation --- square cylinder --- multi-fidelity --- turbulence model --- subsonic --- large eddy simulation --- after-body --- flow distortion --- VLM --- numerical dissipation --- hypersonic --- modified equation analysis --- fluid mechanics --- reduced order aerodynamic model --- p-factor --- URANS --- flexible wings --- chemistry --- detection --- microelectromechanical systems (MEMS) --- angle of attack --- sharp-edge gust --- truncation error --- aerodynamic performance --- quasi-analytical --- gasdynamics --- discontinuous Galerkin finite element method (DG–FEM) --- geometry --- S-duct diffuser
Choose an application
With the advances in high-speed computer technology, complex heat transfer and fluid flow problems can be solved computationally with high accuracy. Computational modeling techniques have found a wide range of applications in diverse fields of mechanical, aerospace, energy, environmental engineering, as well as numerous industrial systems. Computational modeling has also been used extensively for performance optimization of a variety of engineering designs. The purpose of this book is to present recent advances, as well as up-to-date progress in all areas of innovative computational heat transfer and fluid mechanics, including both fundamental and practical applications. The scope of the present book includes single and multiphase flows, laminar and turbulent flows, heat and mass transfer, energy storage, heat exchangers, respiratory flows and heat transfer, biomedical applications, porous media, and optimization. In addition, this book provides guidelines for engineers and researchers in computational modeling and simulations in fluid mechanics and heat transfer.
auxiliary feedwater system --- cavitation --- computational fluid dynamics --- in-service testing --- multiphase flow --- multi-stage orifice --- nonuniform metal foam --- melting heat transfer --- thermal energy storage --- conical swirl atomizer --- atomization --- CFD --- Eulerian model --- heat transfer coefficient --- micro-fins --- friction factor --- numerical methods --- micro- and macro-parameters of the atomized liquid --- mechanism of effervescent-swirl atomization --- efficiency of atomization process --- effervescent-swirl atomizer --- fixed-bed reactor --- wall structures --- complex particle shapes --- process intensification --- heat transfer --- photovoltaic cell efficiency --- thermal regulation --- energy and light harvesting --- irreversibility losses --- quantum dynamics --- nature-inspired mimicking --- heat transfer enhancement --- radiation insert --- numerical simulations --- performance evaluation criteria --- thermal efficiency --- particle sedimentation --- resistance force --- fractional-order integro-differential equation --- laplace transform --- Mittag–Leffler function --- block-pulse operational matrix --- Nu number --- microchannel heat sink --- trefoil ribs --- thermal enhancement --- thermal resistance --- triple-tube heat exchanger --- twisted fin array --- phase change material --- solidification --- nanofluids advantages and disadvantages --- thermal hydraulic performance --- vortex generators --- micro-channel
Choose an application
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.
numerical methods --- modeling --- aerodynamics --- Taylor–Green vortex --- slender-body --- neural networks --- shock-channel --- wind gust responses --- installed propeller --- bifurcation --- RANS --- wake --- multi-directional --- bluff body --- MDO --- variable fidelity --- computational fluid dynamics (CFD) --- high angles of attack --- aeroelasticity --- computational fluid dynamics --- wind tunnel --- Godunov method --- flow control --- unsteady aerodynamic characteristics --- overset grid approach --- convolution integral --- MUSCL --- DDES --- dynamic Smagorinsky subgrid-scale model --- CPACS --- flutter --- reduced-order model --- meshing --- vortex generators --- hybrid reduced-order model --- microfluidics --- Riemann solver --- characteristics-based scheme --- CFD --- wing–propeller aerodynamic interaction --- kinetic energy dissipation --- Euler --- formation --- square cylinder --- multi-fidelity --- turbulence model --- subsonic --- large eddy simulation --- after-body --- flow distortion --- VLM --- numerical dissipation --- hypersonic --- modified equation analysis --- fluid mechanics --- reduced order aerodynamic model --- p-factor --- URANS --- flexible wings --- chemistry --- detection --- microelectromechanical systems (MEMS) --- angle of attack --- sharp-edge gust --- truncation error --- aerodynamic performance --- quasi-analytical --- gasdynamics --- discontinuous Galerkin finite element method (DG–FEM) --- geometry --- S-duct diffuser
Choose an application
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.
numerical methods --- modeling --- aerodynamics --- Taylor–Green vortex --- slender-body --- neural networks --- shock-channel --- wind gust responses --- installed propeller --- bifurcation --- RANS --- wake --- multi-directional --- bluff body --- MDO --- variable fidelity --- computational fluid dynamics (CFD) --- high angles of attack --- aeroelasticity --- computational fluid dynamics --- wind tunnel --- Godunov method --- flow control --- unsteady aerodynamic characteristics --- overset grid approach --- convolution integral --- MUSCL --- DDES --- dynamic Smagorinsky subgrid-scale model --- CPACS --- flutter --- reduced-order model --- meshing --- vortex generators --- hybrid reduced-order model --- microfluidics --- Riemann solver --- characteristics-based scheme --- CFD --- wing–propeller aerodynamic interaction --- kinetic energy dissipation --- Euler --- formation --- square cylinder --- multi-fidelity --- turbulence model --- subsonic --- large eddy simulation --- after-body --- flow distortion --- VLM --- numerical dissipation --- hypersonic --- modified equation analysis --- fluid mechanics --- reduced order aerodynamic model --- p-factor --- URANS --- flexible wings --- chemistry --- detection --- microelectromechanical systems (MEMS) --- angle of attack --- sharp-edge gust --- truncation error --- aerodynamic performance --- quasi-analytical --- gasdynamics --- discontinuous Galerkin finite element method (DG–FEM) --- geometry --- S-duct diffuser --- numerical methods --- modeling --- aerodynamics --- Taylor–Green vortex --- slender-body --- neural networks --- shock-channel --- wind gust responses --- installed propeller --- bifurcation --- RANS --- wake --- multi-directional --- bluff body --- MDO --- variable fidelity --- computational fluid dynamics (CFD) --- high angles of attack --- aeroelasticity --- computational fluid dynamics --- wind tunnel --- Godunov method --- flow control --- unsteady aerodynamic characteristics --- overset grid approach --- convolution integral --- MUSCL --- DDES --- dynamic Smagorinsky subgrid-scale model --- CPACS --- flutter --- reduced-order model --- meshing --- vortex generators --- hybrid reduced-order model --- microfluidics --- Riemann solver --- characteristics-based scheme --- CFD --- wing–propeller aerodynamic interaction --- kinetic energy dissipation --- Euler --- formation --- square cylinder --- multi-fidelity --- turbulence model --- subsonic --- large eddy simulation --- after-body --- flow distortion --- VLM --- numerical dissipation --- hypersonic --- modified equation analysis --- fluid mechanics --- reduced order aerodynamic model --- p-factor --- URANS --- flexible wings --- chemistry --- detection --- microelectromechanical systems (MEMS) --- angle of attack --- sharp-edge gust --- truncation error --- aerodynamic performance --- quasi-analytical --- gasdynamics --- discontinuous Galerkin finite element method (DG–FEM) --- geometry --- S-duct diffuser
Choose an application
With the advances in high-speed computer technology, complex heat transfer and fluid flow problems can be solved computationally with high accuracy. Computational modeling techniques have found a wide range of applications in diverse fields of mechanical, aerospace, energy, environmental engineering, as well as numerous industrial systems. Computational modeling has also been used extensively for performance optimization of a variety of engineering designs. The purpose of this book is to present recent advances, as well as up-to-date progress in all areas of innovative computational heat transfer and fluid mechanics, including both fundamental and practical applications. The scope of the present book includes single and multiphase flows, laminar and turbulent flows, heat and mass transfer, energy storage, heat exchangers, respiratory flows and heat transfer, biomedical applications, porous media, and optimization. In addition, this book provides guidelines for engineers and researchers in computational modeling and simulations in fluid mechanics and heat transfer.
Technology: general issues --- History of engineering & technology --- auxiliary feedwater system --- cavitation --- computational fluid dynamics --- in-service testing --- multiphase flow --- multi-stage orifice --- nonuniform metal foam --- melting heat transfer --- thermal energy storage --- conical swirl atomizer --- atomization --- CFD --- Eulerian model --- heat transfer coefficient --- micro-fins --- friction factor --- numerical methods --- micro- and macro-parameters of the atomized liquid --- mechanism of effervescent-swirl atomization --- efficiency of atomization process --- effervescent-swirl atomizer --- fixed-bed reactor --- wall structures --- complex particle shapes --- process intensification --- heat transfer --- photovoltaic cell efficiency --- thermal regulation --- energy and light harvesting --- irreversibility losses --- quantum dynamics --- nature-inspired mimicking --- heat transfer enhancement --- radiation insert --- numerical simulations --- performance evaluation criteria --- thermal efficiency --- particle sedimentation --- resistance force --- fractional-order integro-differential equation --- laplace transform --- Mittag–Leffler function --- block-pulse operational matrix --- Nu number --- microchannel heat sink --- trefoil ribs --- thermal enhancement --- thermal resistance --- triple-tube heat exchanger --- twisted fin array --- phase change material --- solidification --- nanofluids advantages and disadvantages --- thermal hydraulic performance --- vortex generators --- micro-channel --- auxiliary feedwater system --- cavitation --- computational fluid dynamics --- in-service testing --- multiphase flow --- multi-stage orifice --- nonuniform metal foam --- melting heat transfer --- thermal energy storage --- conical swirl atomizer --- atomization --- CFD --- Eulerian model --- heat transfer coefficient --- micro-fins --- friction factor --- numerical methods --- micro- and macro-parameters of the atomized liquid --- mechanism of effervescent-swirl atomization --- efficiency of atomization process --- effervescent-swirl atomizer --- fixed-bed reactor --- wall structures --- complex particle shapes --- process intensification --- heat transfer --- photovoltaic cell efficiency --- thermal regulation --- energy and light harvesting --- irreversibility losses --- quantum dynamics --- nature-inspired mimicking --- heat transfer enhancement --- radiation insert --- numerical simulations --- performance evaluation criteria --- thermal efficiency --- particle sedimentation --- resistance force --- fractional-order integro-differential equation --- laplace transform --- Mittag–Leffler function --- block-pulse operational matrix --- Nu number --- microchannel heat sink --- trefoil ribs --- thermal enhancement --- thermal resistance --- triple-tube heat exchanger --- twisted fin array --- phase change material --- solidification --- nanofluids advantages and disadvantages --- thermal hydraulic performance --- vortex generators --- micro-channel
Choose an application
This book, entitled “The Green Energy Technology”, covers technologies, products, equipment, and devices, as well as energy services, based on software and data protected by patents and/or trademarks. The recent trends underline the principles of a circular economy such as sustainable product design, extending the product’s lifecycle, reusability, and recycling. These are highly related to climate change and environmental impact, and limited natural resources require scientific research and novel technical solutions. This book will serve as a collection of the latest scientific and technological approaches to “green”—i.e., environmentally friendly and sustainable—technologies. While the focus is on energy and bioenergy, it also covers "green" solutions in all aspects of industrial engineering. Green Energy Technology addresses researchers, advanced students, technical consultants and decision-makers in industries and politics. This book is a comprehensive overview and in-depth technical research paper addressing recent progress in Green Energy Technology. We hope that readers will enjoy reading this book.
Technology: general issues --- esterification --- biodiesel --- noncatalytic reaction --- kinetic --- microwave irradiation --- bioenergy --- energy saving --- daylight --- heat flux reduction --- illumination --- CIE standard --- deep dynamic stall --- passive vortex generators --- wind turbine airfoil --- URANS simulations --- socio-technical transition --- strateg0ic niche management --- clean energy technologies --- argumentative discourse analysis --- innovation policy --- regional electricity market --- energy security --- energy efficiency --- energy sustainability --- ASEAN --- electricity liberalisation --- electricity unbundling --- TRACE --- MARS-KS --- PSBT --- void fraction --- crossflow --- circulating fluidized bed --- adsorption --- activated carbon --- phenol --- glass beads --- green supply chain --- value co-creation --- firm performance --- waste plastic oil (WPO) --- engine performance --- renewable gasoline --- pyrolysis --- Energy hybridization --- hydropower --- wind energy --- solar energy --- rural areas --- 100% Renewable grid --- energy harvesting --- electromagnetic generator --- energy floor tile --- power management system --- footstep energy harvesting --- piezoelectric --- energy harvesting paver --- hydrogen blending --- natural gas networks --- power-to-hydrogen --- hydrogen and compressed natural gas --- renewable energy --- hydrogen strategy --- water --- floatovoltaic --- photovoltaic --- energy water nexus --- dual use --- water conservation --- FPV --- floating photovoltaic --- wave energy converter --- hydraulic power take-off unit --- parameter estimation --- genetic algorithm --- non-linear programming by quadratic Lagrangian --- light pipe --- light transmission --- daylight factor --- small-scale --- success factor --- community renewable energy --- sustainable energy --- print circuit heat exchanger --- PCHE --- efficiency --- nusselt number --- heat transfer coefficient --- NTU value --- thermal performance --- esterification --- biodiesel --- noncatalytic reaction --- kinetic --- microwave irradiation --- bioenergy --- energy saving --- daylight --- heat flux reduction --- illumination --- CIE standard --- deep dynamic stall --- passive vortex generators --- wind turbine airfoil --- URANS simulations --- socio-technical transition --- strateg0ic niche management --- clean energy technologies --- argumentative discourse analysis --- innovation policy --- regional electricity market --- energy security --- energy efficiency --- energy sustainability --- ASEAN --- electricity liberalisation --- electricity unbundling --- TRACE --- MARS-KS --- PSBT --- void fraction --- crossflow --- circulating fluidized bed --- adsorption --- activated carbon --- phenol --- glass beads --- green supply chain --- value co-creation --- firm performance --- waste plastic oil (WPO) --- engine performance --- renewable gasoline --- pyrolysis --- Energy hybridization --- hydropower --- wind energy --- solar energy --- rural areas --- 100% Renewable grid --- energy harvesting --- electromagnetic generator --- energy floor tile --- power management system --- footstep energy harvesting --- piezoelectric --- energy harvesting paver --- hydrogen blending --- natural gas networks --- power-to-hydrogen --- hydrogen and compressed natural gas --- renewable energy --- hydrogen strategy --- water --- floatovoltaic --- photovoltaic --- energy water nexus --- dual use --- water conservation --- FPV --- floating photovoltaic --- wave energy converter --- hydraulic power take-off unit --- parameter estimation --- genetic algorithm --- non-linear programming by quadratic Lagrangian --- light pipe --- light transmission --- daylight factor --- small-scale --- success factor --- community renewable energy --- sustainable energy --- print circuit heat exchanger --- PCHE --- efficiency --- nusselt number --- heat transfer coefficient --- NTU value --- thermal performance
Choose an application
This book, entitled “The Green Energy Technology”, covers technologies, products, equipment, and devices, as well as energy services, based on software and data protected by patents and/or trademarks. The recent trends underline the principles of a circular economy such as sustainable product design, extending the product’s lifecycle, reusability, and recycling. These are highly related to climate change and environmental impact, and limited natural resources require scientific research and novel technical solutions. This book will serve as a collection of the latest scientific and technological approaches to “green”—i.e., environmentally friendly and sustainable—technologies. While the focus is on energy and bioenergy, it also covers "green" solutions in all aspects of industrial engineering. Green Energy Technology addresses researchers, advanced students, technical consultants and decision-makers in industries and politics. This book is a comprehensive overview and in-depth technical research paper addressing recent progress in Green Energy Technology. We hope that readers will enjoy reading this book.
Technology: general issues --- esterification --- biodiesel --- noncatalytic reaction --- kinetic --- microwave irradiation --- bioenergy --- energy saving --- daylight --- heat flux reduction --- illumination --- CIE standard --- deep dynamic stall --- passive vortex generators --- wind turbine airfoil --- URANS simulations --- socio-technical transition --- strateg0ic niche management --- clean energy technologies --- argumentative discourse analysis --- innovation policy --- regional electricity market --- energy security --- energy efficiency --- energy sustainability --- ASEAN --- electricity liberalisation --- electricity unbundling --- TRACE --- MARS-KS --- PSBT --- void fraction --- crossflow --- circulating fluidized bed --- adsorption --- activated carbon --- phenol --- glass beads --- green supply chain --- value co-creation --- firm performance --- waste plastic oil (WPO) --- engine performance --- renewable gasoline --- pyrolysis --- Energy hybridization --- hydropower --- wind energy --- solar energy --- rural areas --- 100% Renewable grid --- energy harvesting --- electromagnetic generator --- energy floor tile --- power management system --- footstep energy harvesting --- piezoelectric --- energy harvesting paver --- hydrogen blending --- natural gas networks --- power-to-hydrogen --- hydrogen and compressed natural gas --- renewable energy --- hydrogen strategy --- water --- floatovoltaic --- photovoltaic --- energy water nexus --- dual use --- water conservation --- FPV --- floating photovoltaic --- wave energy converter --- hydraulic power take-off unit --- parameter estimation --- genetic algorithm --- non-linear programming by quadratic Lagrangian --- light pipe --- light transmission --- daylight factor --- small-scale --- success factor --- community renewable energy --- sustainable energy --- print circuit heat exchanger --- PCHE --- efficiency --- nusselt number --- heat transfer coefficient --- NTU value --- thermal performance --- n/a
Choose an application
This book, entitled “The Green Energy Technology”, covers technologies, products, equipment, and devices, as well as energy services, based on software and data protected by patents and/or trademarks. The recent trends underline the principles of a circular economy such as sustainable product design, extending the product’s lifecycle, reusability, and recycling. These are highly related to climate change and environmental impact, and limited natural resources require scientific research and novel technical solutions. This book will serve as a collection of the latest scientific and technological approaches to “green”—i.e., environmentally friendly and sustainable—technologies. While the focus is on energy and bioenergy, it also covers "green" solutions in all aspects of industrial engineering. Green Energy Technology addresses researchers, advanced students, technical consultants and decision-makers in industries and politics. This book is a comprehensive overview and in-depth technical research paper addressing recent progress in Green Energy Technology. We hope that readers will enjoy reading this book.
esterification --- biodiesel --- noncatalytic reaction --- kinetic --- microwave irradiation --- bioenergy --- energy saving --- daylight --- heat flux reduction --- illumination --- CIE standard --- deep dynamic stall --- passive vortex generators --- wind turbine airfoil --- URANS simulations --- socio-technical transition --- strateg0ic niche management --- clean energy technologies --- argumentative discourse analysis --- innovation policy --- regional electricity market --- energy security --- energy efficiency --- energy sustainability --- ASEAN --- electricity liberalisation --- electricity unbundling --- TRACE --- MARS-KS --- PSBT --- void fraction --- crossflow --- circulating fluidized bed --- adsorption --- activated carbon --- phenol --- glass beads --- green supply chain --- value co-creation --- firm performance --- waste plastic oil (WPO) --- engine performance --- renewable gasoline --- pyrolysis --- Energy hybridization --- hydropower --- wind energy --- solar energy --- rural areas --- 100% Renewable grid --- energy harvesting --- electromagnetic generator --- energy floor tile --- power management system --- footstep energy harvesting --- piezoelectric --- energy harvesting paver --- hydrogen blending --- natural gas networks --- power-to-hydrogen --- hydrogen and compressed natural gas --- renewable energy --- hydrogen strategy --- water --- floatovoltaic --- photovoltaic --- energy water nexus --- dual use --- water conservation --- FPV --- floating photovoltaic --- wave energy converter --- hydraulic power take-off unit --- parameter estimation --- genetic algorithm --- non-linear programming by quadratic Lagrangian --- light pipe --- light transmission --- daylight factor --- small-scale --- success factor --- community renewable energy --- sustainable energy --- print circuit heat exchanger --- PCHE --- efficiency --- nusselt number --- heat transfer coefficient --- NTU value --- thermal performance --- n/a
Listing 1 - 10 of 10 |
Sort by
|