Listing 1 - 5 of 5 |
Sort by
|
Choose an application
The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales.
prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse–fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- Riemann–Liouville fractional derivative --- fractional Kelvin–Voigt model --- fractional Poynting–Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach --- n/a --- coarse-fine composite --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model
Choose an application
During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations.
Research & information: general --- Mathematics & science --- weakly upper semicontinuous --- essential maps --- homotopy --- Riemann-Liouville fractional differential equation --- delay --- lower and upper solutions --- monotone-iterative technique --- homoclinic solutions --- fourth-order p-Laplacian differential equations --- minimization theorem --- Clark’s theorem --- exponential dichotomy --- roughness --- asymptotically constant matrices --- double fuzzy Sumudu transform --- partial Volterra fuzzy integro-differential equations --- n-th order fuzzy partial H-derivative --- m-dissipative operators --- limit solutions --- integral solutions --- one-sided Perron condition --- Banach spaces --- fixed point --- complete metric space --- fractional differential equations --- optimal feedback control --- Voigt model --- alpha-model --- fractional derivative --- Riemann–Liouville fractional differential equations --- nonlocal boundary conditions --- positive solutions --- existence --- multiplicity --- Caputo derivative --- Riemann–Liouville integral --- multipoint and sub-strip boundary conditions --- fixed point theorem --- fractional Navier–Stokes equations --- variable delay --- modified fractional Halanay inequality --- generalized comparison principle --- dissipativity --- Fourier-Laplace transforms --- porous material --- eigenvalues method --- fractional time derivative
Choose an application
During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations.
weakly upper semicontinuous --- essential maps --- homotopy --- Riemann-Liouville fractional differential equation --- delay --- lower and upper solutions --- monotone-iterative technique --- homoclinic solutions --- fourth-order p-Laplacian differential equations --- minimization theorem --- Clark’s theorem --- exponential dichotomy --- roughness --- asymptotically constant matrices --- double fuzzy Sumudu transform --- partial Volterra fuzzy integro-differential equations --- n-th order fuzzy partial H-derivative --- m-dissipative operators --- limit solutions --- integral solutions --- one-sided Perron condition --- Banach spaces --- fixed point --- complete metric space --- fractional differential equations --- optimal feedback control --- Voigt model --- alpha-model --- fractional derivative --- Riemann–Liouville fractional differential equations --- nonlocal boundary conditions --- positive solutions --- existence --- multiplicity --- Caputo derivative --- Riemann–Liouville integral --- multipoint and sub-strip boundary conditions --- fixed point theorem --- fractional Navier–Stokes equations --- variable delay --- modified fractional Halanay inequality --- generalized comparison principle --- dissipativity --- Fourier-Laplace transforms --- porous material --- eigenvalues method --- fractional time derivative
Choose an application
During the past decades, the subject of calculus of integrals and derivatives of any arbitrary real or complex order has gained considerable popularity and impact. This is mainly due to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. In connection with this, great importance is attached to the publication of results that focus on recent and novel developments in the theory of any types of differential and fractional differential equation and inclusions, especially covering analytical and numerical research for such kinds of equations. This book is a compilation of articles from a Special Issue of Mathematics devoted to the topic of “Recent Investigations of Differential and Fractional Equations and Inclusions”. It contains some theoretical works and approximate methods in fractional differential equations and inclusions as well as fuzzy integrodifferential equations. Many of the papers were supported by the Bulgarian National Science Fund under Project KP-06-N32/7. Overall, the volume is an excellent witness of the relevance of the theory of fractional differential equations.
Research & information: general --- Mathematics & science --- weakly upper semicontinuous --- essential maps --- homotopy --- Riemann-Liouville fractional differential equation --- delay --- lower and upper solutions --- monotone-iterative technique --- homoclinic solutions --- fourth-order p-Laplacian differential equations --- minimization theorem --- Clark’s theorem --- exponential dichotomy --- roughness --- asymptotically constant matrices --- double fuzzy Sumudu transform --- partial Volterra fuzzy integro-differential equations --- n-th order fuzzy partial H-derivative --- m-dissipative operators --- limit solutions --- integral solutions --- one-sided Perron condition --- Banach spaces --- fixed point --- complete metric space --- fractional differential equations --- optimal feedback control --- Voigt model --- alpha-model --- fractional derivative --- Riemann–Liouville fractional differential equations --- nonlocal boundary conditions --- positive solutions --- existence --- multiplicity --- Caputo derivative --- Riemann–Liouville integral --- multipoint and sub-strip boundary conditions --- fixed point theorem --- fractional Navier–Stokes equations --- variable delay --- modified fractional Halanay inequality --- generalized comparison principle --- dissipativity --- Fourier-Laplace transforms --- porous material --- eigenvalues method --- fractional time derivative
Choose an application
The advancement in manufacturing technology and scientific research has improved the development of enhanced composite materials with tailored properties depending on their design requirements in many engineering fields, as well as in thermal and energy management. Some representative examples of advanced materials in many smart applications and complex structures rely on laminated composites, functionally graded materials (FGMs), and carbon-based constituents, primarily carbon nanotubes (CNTs), and graphene sheets or nanoplatelets, because of their remarkable mechanical properties, electrical conductivity and high permeability. For such materials, experimental tests usually require a large economical effort because of the complex nature of each constituent, together with many environmental, geometrical and or mechanical uncertainties of non-conventional specimens. At the same time, the theoretical and/or computational approaches represent a valid alternative for designing complex manufacts with more flexibility. In such a context, the development of advanced theoretical and computational models for composite materials and structures is a subject of active research, as explored here for a large variety of structural members, involving the static, dynamic, buckling, and damage/fracturing problems at different scales.
Technology: general issues --- History of engineering & technology --- prestressed concrete cylinder pipe --- external prestressed steel strands --- theoretical study --- wire-breakage --- first-principles calculation --- Heusler compounds --- gapless half metals --- spin gapless semiconductor --- bi-directional functionally graded --- bolotin scheme --- dynamic stability --- elastic foundation --- porosity --- two-axis four-gimbal --- electro-optical pod --- dynamics modeling --- coarse-fine composite --- Carbon-fiber-reinforced plastics (CFRPs) --- fastener --- arc --- Joule heat --- finite element analysis (FEA) --- piezoelectric effect --- bimodular model --- functionally-graded materials --- cantilever --- vibration --- functional reinforcement --- graphene nanoplatelets --- higher-order shear deformable laminated beams --- nanocomposites --- nonlinear free vibration --- sandwich beams --- fractional calculus --- Riemann-Liouville fractional derivative --- viscoelasticity --- pipe flow --- fractional Maxwell model --- fractional Zener model --- fractional Burgers model --- fractional Kelvin-Voigt model --- fractional Poynting-Thomson model --- curved sandwich nanobeams --- nonlocal strain gradient theory --- quasi-3D higher-order shear theory --- thermal-buckling --- FG-GPL --- GDQ --- heat transfer equation --- higher-order shear deformation theory --- buckling --- FE-GDQ --- functionally graded materials --- 3D elasticity --- 3D shell model --- steady-state hygro-elastic analysis --- Fick moisture diffusion equation --- moisture content profile --- layer-wise approach
Listing 1 - 5 of 5 |
Sort by
|