Listing 1 - 4 of 4 |
Sort by
|
Choose an application
Friction stir welding (FSW) is considered to be the most significant development in metal joining in decades and, in addition, is a ""green"" technology due to its energy efficiency, environmental friendliness, and versatility. This process offers a number of advantages over conventional joining processes. Furthermore, because welding occurs via the deformation of material at temperatures below the melting temperature, many problems commonly associated with joining of dissimilar alloys can be avoided, and thus, high-quality welds are produced. Due to this fact, FSW has been widely used in different industrial applications where metallurgical characteristics should be retained, such as in the aeronautic, naval, and automotive industries.
n/a --- microstructure --- material flow --- stainless steel --- materials position --- friction stir processing --- surface composites --- material orientation --- high nitrogen steel --- force–deflection model --- FSW --- mechanical properties --- FSW process --- dissimilar metal welding --- lognormal distribution --- grain orientation --- dissimilar joints --- friction-stir welding --- pin shapes --- deflection compensation control --- plunge depth control --- process analysis --- high-temperature softening materials --- Al/Fe dissimilar joining --- post-weld heat treatment --- aluminum alloy --- abnormal grain growth --- particle distribution --- intermetallic compounds --- non-equilibrium segregation --- microstructure analysis --- tilt angle --- Vickers microhardness --- the rotational speeds --- adaptive control --- offset position control --- friction stir spot welding --- friction --- plunge depth --- mechanical strength --- mechanical behaviour --- dissimilar welded joints --- friction stir welding --- Fe-containing constituents --- high rotation speed friction stir welding --- force-deflection model
Choose an application
Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.
History of engineering & technology --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition --- n/a
Choose an application
Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.
carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition --- n/a
Choose an application
Thermal spray technology has been widely adopted industrially to combat diverse forms of surface degradation caused by wear, corrosion, oxidation, high thermal load, etc. Nonetheless, improvements in coating quality are incessantly sought to further enhance durability and/or performance of components operating in increasingly aggressive environments. This has led to technology advancements on various fronts, spanning feedstock materials, process variants, torch designs, coating architectures, etc. These have also been complemented by developments in closely allied areas to accommodate novel substrate materials, explore post-treatments, investigate coating behaviour under varied harsh conditions and harness benefits of artificial intelligence/neural networking. All of the above, along with efforts to improve diagnostic tools and create reliable control systems, have been driven by the desire to achieve robust shop-floor thermal spray capabilities to consolidate existing applications and spur new ones. This book is a compilation of twelve exciting contributions made for the Special Issue on “Advances in Thermal Spray Technology”, and showcases some of the above developments that are currently attracting interest in the field.
History of engineering & technology --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition --- carbon/carbon (C/C) composites --- ultra-high temperature ceramic (UHTC) --- vacuum plasma spray (VPS) --- ablation resistance --- thermal spraying --- high velocity oxy-fuel (HVOF) --- S-phase --- expanded austenite --- 316L --- stainless steel --- thermochemical treatment --- hardening --- gas nitriding --- axial feeding --- hybrid plasma spray coating --- bovine serum solution --- sliding wear --- indentation --- double-layered TBC --- gadolinium zirconate --- suspension plasma spray --- thermal cyclic fatigue --- burner rig test --- yttria stabilized zirconia --- titanium carbide --- chromium carbide --- wear --- cold spray --- neural network --- additive manufacturing --- model --- spray angle --- profile --- amorphous --- nanocrystalline --- wear resistant --- Vickers microhardness --- plasma spraying --- high-velocity suspension flame spraying --- copper --- silver --- NiCr 80/20 --- metal coatings --- polymer coatings --- flame spraying --- icephobicity --- ice adhesion --- wettability --- coating design --- corrosion-wear performance --- dense structure --- corrosion potential --- corrosion rate --- worn surface --- HVOF --- hardmetal --- dynamic impact test --- impact wear --- Al2O3-TiO2 system --- APS --- suspension spraying --- microstructure --- morphology --- phase composition
Listing 1 - 4 of 4 |
Sort by
|