Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Choose an application
On a May morning in 1939, eighteen-year-old Velma Demerson and her lover were having breakfast when two police officers arrived to take her away. Her crime was loving a Chinese man, a "crime" that was compounded by her pregnancy and subsequent mixed-race child. Sentenced to a home for wayward girls, Demerson was then transferred (along with forty-six other girls) to Torontos Mercer Reformatory for Females. The girls were locked in their cells for twelve hours a day and required to work in the on-site laundry and factory. They also endured suspect medical examinations. When Demerson was fin
Amours interraciaux --- Prisonnieres --- Interracial dating --- Women prisoners --- Prisoners --- Bi-racial dating --- Biracial dating --- Dating, Bi-racial --- Dating, Biracial --- Dating, Interracial --- Dating (Social customs) --- Demerson, Velma, --- Prisonnières --- Biography. --- Biographies
Choose an application
Changes in land use and land cover can have many drivers, including population growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy regulations, and climate variability. The impacts of these changes on water resources range from changes in water availability (due to changes in losses of water to evapotranspiration and recharge) to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens). The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore the need for integrated scientific approaches to understand the impacts of landscape change on water resources. Several techniques, such as field studies, long-term monitoring, remote sensing technologies, and advanced modeling studies, have contributed to better understanding the modes and mechanisms by which landscape changes impact water resources. Such research studies can help unlock the complex interconnected influences of landscape on water resources in terms of quantity and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated impacts on water resources.
History of engineering & technology --- LID practices --- watershed scale --- impervious area --- peak flow --- surface runoff --- shallow subsurface runoff and infiltration --- evapotranspiration --- stream temperature --- SWAT --- Marys River watershed --- soil temperature --- solar energy --- watershed model --- landscape scale --- VELMA --- bank erosion --- landscape metrics --- diversity --- Sajó River --- UAV --- spatial configuration units --- best management practices (BMPs) --- spatial optimization --- hydrologic response units (HRUs) --- hydrologically connected fields --- slope positions --- watershed process simulation --- DMMF --- landscape configuration --- landscape ecology --- hydrology --- scaling-up conservation agriculture --- drip irrigation --- groundwater potential --- sustainable intensification --- Ethiopia --- flood analysis --- hydrologic modeling --- hydrodynamic modeling --- HEC-RAS --- flood zone delineation --- landscape change --- water resources analysis --- water modeling --- impact assessment
Choose an application
Changes in land use and land cover can have many drivers, including population growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy regulations, and climate variability. The impacts of these changes on water resources range from changes in water availability (due to changes in losses of water to evapotranspiration and recharge) to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens). The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore the need for integrated scientific approaches to understand the impacts of landscape change on water resources. Several techniques, such as field studies, long-term monitoring, remote sensing technologies, and advanced modeling studies, have contributed to better understanding the modes and mechanisms by which landscape changes impact water resources. Such research studies can help unlock the complex interconnected influences of landscape on water resources in terms of quantity and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated impacts on water resources.
LID practices --- watershed scale --- impervious area --- peak flow --- surface runoff --- shallow subsurface runoff and infiltration --- evapotranspiration --- stream temperature --- SWAT --- Marys River watershed --- soil temperature --- solar energy --- watershed model --- landscape scale --- VELMA --- bank erosion --- landscape metrics --- diversity --- Sajó River --- UAV --- spatial configuration units --- best management practices (BMPs) --- spatial optimization --- hydrologic response units (HRUs) --- hydrologically connected fields --- slope positions --- watershed process simulation --- DMMF --- landscape configuration --- landscape ecology --- hydrology --- scaling-up conservation agriculture --- drip irrigation --- groundwater potential --- sustainable intensification --- Ethiopia --- flood analysis --- hydrologic modeling --- hydrodynamic modeling --- HEC-RAS --- flood zone delineation --- landscape change --- water resources analysis --- water modeling --- impact assessment
Choose an application
Changes in land use and land cover can have many drivers, including population growth, urbanization, agriculture, demand for food, evolution of socio-economic structure, policy regulations, and climate variability. The impacts of these changes on water resources range from changes in water availability (due to changes in losses of water to evapotranspiration and recharge) to degradation of water quality (increased erosion, salinity, chemical loadings, and pathogens). The impacts are manifested through complex hydro-bio-geo-climate characteristics, which underscore the need for integrated scientific approaches to understand the impacts of landscape change on water resources. Several techniques, such as field studies, long-term monitoring, remote sensing technologies, and advanced modeling studies, have contributed to better understanding the modes and mechanisms by which landscape changes impact water resources. Such research studies can help unlock the complex interconnected influences of landscape on water resources in terms of quantity and quality at multiple spatial and temporal scales. In this Special Issue, we published a set of eight peer-reviewed articles elaborating on some of the specific topics of landscape changes and associated impacts on water resources.
History of engineering & technology --- LID practices --- watershed scale --- impervious area --- peak flow --- surface runoff --- shallow subsurface runoff and infiltration --- evapotranspiration --- stream temperature --- SWAT --- Marys River watershed --- soil temperature --- solar energy --- watershed model --- landscape scale --- VELMA --- bank erosion --- landscape metrics --- diversity --- Sajó River --- UAV --- spatial configuration units --- best management practices (BMPs) --- spatial optimization --- hydrologic response units (HRUs) --- hydrologically connected fields --- slope positions --- watershed process simulation --- DMMF --- landscape configuration --- landscape ecology --- hydrology --- scaling-up conservation agriculture --- drip irrigation --- groundwater potential --- sustainable intensification --- Ethiopia --- flood analysis --- hydrologic modeling --- hydrodynamic modeling --- HEC-RAS --- flood zone delineation --- landscape change --- water resources analysis --- water modeling --- impact assessment --- LID practices --- watershed scale --- impervious area --- peak flow --- surface runoff --- shallow subsurface runoff and infiltration --- evapotranspiration --- stream temperature --- SWAT --- Marys River watershed --- soil temperature --- solar energy --- watershed model --- landscape scale --- VELMA --- bank erosion --- landscape metrics --- diversity --- Sajó River --- UAV --- spatial configuration units --- best management practices (BMPs) --- spatial optimization --- hydrologic response units (HRUs) --- hydrologically connected fields --- slope positions --- watershed process simulation --- DMMF --- landscape configuration --- landscape ecology --- hydrology --- scaling-up conservation agriculture --- drip irrigation --- groundwater potential --- sustainable intensification --- Ethiopia --- flood analysis --- hydrologic modeling --- hydrodynamic modeling --- HEC-RAS --- flood zone delineation --- landscape change --- water resources analysis --- water modeling --- impact assessment
Choose an application
Caribbean fiction (English) --- West Indian fiction (English) --- Women and literature --- Women in literature --- Women authors --- History and criticism --- History --- Caribbean Area --- West Indies --- In literature --- Fiction --- Thematology --- Marshall, Paule --- Gilroy, Beryl --- Kincaid, Jamaica --- Rhys, Jean --- Brodber, Erna --- Collins, Merle --- Fuller, Vernella --- Brand, Dionne --- Melville, Pauline --- Edgell, Zee --- Pollard, Velma --- Senior, Olive --- Caribbean area --- Caribbean fiction (English) - Women authors - History and criticism --- West Indian fiction (English) - Women authors - History and criticism --- Women and literature - West Indies - History --- Caribbean Area - In literature --- West Indies - In literature --- LITTERATURE ANTILLAISE DE LANGUE ANGLAISE --- ROMAN ANTILLAIS DE LANGUE ANGLAISE --- FEMMES ET LITTERATURE --- FEMMES --- FEMMES DANS LA LITTERATURE --- REGION CARAÏBE --- FEMMES ECRIVAINS --- HISTOIRE ET CRITIQUE --- CARAIBES --- VIE INTELLECTUELLE --- DANS LA LITTERATURE --- Literature --- Writers --- Book
Listing 1 - 6 of 6 |
Sort by
|