Listing 1 - 7 of 7 |
Sort by
|
Choose an application
Electric vehicles --- Hybrid electric vehicles --- Fuel cell vehicles --- Electric vehicles. --- Fuel cell vehicles. --- Hybrid electric vehicles. --- electric vehicles --- batteries --- hybrid electric vehicles --- power electronic subsystems --- V2H & V2G power transmission --- v2h & v2g power transmission --- Nuclear energy --- Transport engineering
Choose an application
This Special Issue “Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies” was in session from 1 May 2019 to 31 May 2020. For this Special issue, we invited articles on current state-of-the-art technologies and solutions in G2V and V2G, including but not limited to the operation and control of gridable vehicles, energy storage and management systems, charging infrastructure and chargers, EV demand and load forecasting, V2G interfaces and applications, V2G and energy reliability and security, environmental impacts, and economic benefits as well as demonstration projects and case studies in the aforementioned areas. Articles that deal with the latest hot topics in V2G are of particular interest, such as V2G and demand-side response control technique, smart charging infrastructure and grid planning, advanced power electronics for V2G systems, adaptation of V2G systems in the smart grid, adaptation of smart cities for a large number of EVs, integration, and the optimization of V2G systems, utilities and transportation assets for advanced V2G systems, wireless power transfer systems for advanced V2G systems, fault detection, maintenance and diagnostics in V2G processes, communications protocols for V2G systems, energy management system (EMS) in V2G systems, IoT for V2G systems, distributed energy and storage systems for V2G, transportation networks and V2G, energy management for V2G, smart charging/discharging stations for efficient V2G, environmental and socio-economic benefits and challenges of V2G systems, and building integrated V2G systems (BIV2G). Five manuscripts are published in this Special Issue, including “An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads” by Agyeman et al., “Where Will You Park? Predicting Vehicle Locations for Vehicle-to-Grid, An MPC Scheme with Enhanced Active Voltage Vector Region for V2G Inverter” by Shipman et al., “Electric Vehicles Energy Management with V2G/G2V Multifactor Optimization of Smart Grids” by Xia et al., and “A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies” by Savitti et al.
History of engineering & technology --- vehicle-to-grid (V2G) --- vehicle-to-home (V2H) --- bi-directional charging topologies --- communication standards --- battery cycle --- smart grid --- optimization --- energy management --- electric vehicles --- distributed generation --- MPC --- AV2R --- V2G --- inverter --- vehicle-to-grid --- vehicle location prediction --- automated machine learning --- machine learning --- Bayesian --- deep neural network --- demand load forecast --- distributed load --- ensemble algorithm stochastic --- K-means --- vehicle-to-grid (V2G) --- vehicle-to-home (V2H) --- bi-directional charging topologies --- communication standards --- battery cycle --- smart grid --- optimization --- energy management --- electric vehicles --- distributed generation --- MPC --- AV2R --- V2G --- inverter --- vehicle-to-grid --- vehicle location prediction --- automated machine learning --- machine learning --- Bayesian --- deep neural network --- demand load forecast --- distributed load --- ensemble algorithm stochastic --- K-means
Choose an application
This Special Issue “Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies” was in session from 1 May 2019 to 31 May 2020. For this Special issue, we invited articles on current state-of-the-art technologies and solutions in G2V and V2G, including but not limited to the operation and control of gridable vehicles, energy storage and management systems, charging infrastructure and chargers, EV demand and load forecasting, V2G interfaces and applications, V2G and energy reliability and security, environmental impacts, and economic benefits as well as demonstration projects and case studies in the aforementioned areas. Articles that deal with the latest hot topics in V2G are of particular interest, such as V2G and demand-side response control technique, smart charging infrastructure and grid planning, advanced power electronics for V2G systems, adaptation of V2G systems in the smart grid, adaptation of smart cities for a large number of EVs, integration, and the optimization of V2G systems, utilities and transportation assets for advanced V2G systems, wireless power transfer systems for advanced V2G systems, fault detection, maintenance and diagnostics in V2G processes, communications protocols for V2G systems, energy management system (EMS) in V2G systems, IoT for V2G systems, distributed energy and storage systems for V2G, transportation networks and V2G, energy management for V2G, smart charging/discharging stations for efficient V2G, environmental and socio-economic benefits and challenges of V2G systems, and building integrated V2G systems (BIV2G). Five manuscripts are published in this Special Issue, including “An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads” by Agyeman et al., “Where Will You Park? Predicting Vehicle Locations for Vehicle-to-Grid, An MPC Scheme with Enhanced Active Voltage Vector Region for V2G Inverter” by Shipman et al., “Electric Vehicles Energy Management with V2G/G2V Multifactor Optimization of Smart Grids” by Xia et al., and “A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies” by Savitti et al.
History of engineering & technology --- vehicle-to-grid (V2G) --- vehicle-to-home (V2H) --- bi-directional charging topologies --- communication standards --- battery cycle --- smart grid --- optimization --- energy management --- electric vehicles --- distributed generation --- MPC --- AV2R --- V2G --- inverter --- vehicle-to-grid --- vehicle location prediction --- automated machine learning --- machine learning --- Bayesian --- deep neural network --- demand load forecast --- distributed load --- ensemble algorithm stochastic --- K-means
Choose an application
This Special Issue “Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Technologies” was in session from 1 May 2019 to 31 May 2020. For this Special issue, we invited articles on current state-of-the-art technologies and solutions in G2V and V2G, including but not limited to the operation and control of gridable vehicles, energy storage and management systems, charging infrastructure and chargers, EV demand and load forecasting, V2G interfaces and applications, V2G and energy reliability and security, environmental impacts, and economic benefits as well as demonstration projects and case studies in the aforementioned areas. Articles that deal with the latest hot topics in V2G are of particular interest, such as V2G and demand-side response control technique, smart charging infrastructure and grid planning, advanced power electronics for V2G systems, adaptation of V2G systems in the smart grid, adaptation of smart cities for a large number of EVs, integration, and the optimization of V2G systems, utilities and transportation assets for advanced V2G systems, wireless power transfer systems for advanced V2G systems, fault detection, maintenance and diagnostics in V2G processes, communications protocols for V2G systems, energy management system (EMS) in V2G systems, IoT for V2G systems, distributed energy and storage systems for V2G, transportation networks and V2G, energy management for V2G, smart charging/discharging stations for efficient V2G, environmental and socio-economic benefits and challenges of V2G systems, and building integrated V2G systems (BIV2G). Five manuscripts are published in this Special Issue, including “An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads” by Agyeman et al., “Where Will You Park? Predicting Vehicle Locations for Vehicle-to-Grid, An MPC Scheme with Enhanced Active Voltage Vector Region for V2G Inverter” by Shipman et al., “Electric Vehicles Energy Management with V2G/G2V Multifactor Optimization of Smart Grids” by Xia et al., and “A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies” by Savitti et al.
vehicle-to-grid (V2G) --- vehicle-to-home (V2H) --- bi-directional charging topologies --- communication standards --- battery cycle --- smart grid --- optimization --- energy management --- electric vehicles --- distributed generation --- MPC --- AV2R --- V2G --- inverter --- vehicle-to-grid --- vehicle location prediction --- automated machine learning --- machine learning --- Bayesian --- deep neural network --- demand load forecast --- distributed load --- ensemble algorithm stochastic --- K-means
Choose an application
The electric power sector is poised for transformative changes. Improvements in the cost and performance of a range of distributed energy generation (DG) technologies and the potential for breakthroughs in distributed energy storage (DS) are creating new options for onsite power generation and storage, driving increasing adoption and impacting utility distribution system operations. In addition, changing uses and use patterns for electricity—from plug-in electric vehicles (EVs) to demand response (DR)—are altering demands placed on the electric power system. Finally, the infusion of new information and communications technology (ICT) into the electric system and its markets is enabling the collection of immense volumes of data on power sector operations and use; unprecedented control of generation, networks, and loads; and new opportunities for the delivery of energy services. In this Special Issue of Energies, research papers on topics related to the integration of distributed energy resources (DG, DS, EV, and DR) are included. From technologies to software tools to system-wide evaluations, the impacts of all aforementioned distributed resources on both operation and planning are examined.
History of engineering & technology --- machine learning --- microgrids --- optimisation methods --- power systems --- reinforcement learning --- high penetration --- renewable energy --- adaptability planning --- source-grid coordination --- renewable electricity distribution for public space --- sustainability assessment model --- integrated assessment for public space --- tripartite altruism --- urban renewable energy --- ecological infrastructures --- Micro-grids --- continuity of supply --- power distribution --- power system planning --- decentralized control --- small hydropower plants --- microgrid --- emergency control --- recloser --- synchronous coupler --- power systems stability --- power system operation --- power system security --- renewable energy integration --- load flow analysis --- congestion management --- distributed generation curtailment --- demand side management --- demand response --- cyber-physical systems --- dynamic pricing --- load forecasting --- attack detection --- photovoltaics --- distributed energy resources (DERs) --- grid impact --- power quality --- low-voltage distribution network --- inverter regulation --- electric vehicles --- uncontrolled charging --- delayed charging --- controlled charging --- V2G --- V2B --- V2H --- peak shaving --- valley filling --- renewable energy sources
Choose an application
The electric power sector is poised for transformative changes. Improvements in the cost and performance of a range of distributed energy generation (DG) technologies and the potential for breakthroughs in distributed energy storage (DS) are creating new options for onsite power generation and storage, driving increasing adoption and impacting utility distribution system operations. In addition, changing uses and use patterns for electricity—from plug-in electric vehicles (EVs) to demand response (DR)—are altering demands placed on the electric power system. Finally, the infusion of new information and communications technology (ICT) into the electric system and its markets is enabling the collection of immense volumes of data on power sector operations and use; unprecedented control of generation, networks, and loads; and new opportunities for the delivery of energy services. In this Special Issue of Energies, research papers on topics related to the integration of distributed energy resources (DG, DS, EV, and DR) are included. From technologies to software tools to system-wide evaluations, the impacts of all aforementioned distributed resources on both operation and planning are examined.
machine learning --- microgrids --- optimisation methods --- power systems --- reinforcement learning --- high penetration --- renewable energy --- adaptability planning --- source-grid coordination --- renewable electricity distribution for public space --- sustainability assessment model --- integrated assessment for public space --- tripartite altruism --- urban renewable energy --- ecological infrastructures --- Micro-grids --- continuity of supply --- power distribution --- power system planning --- decentralized control --- small hydropower plants --- microgrid --- emergency control --- recloser --- synchronous coupler --- power systems stability --- power system operation --- power system security --- renewable energy integration --- load flow analysis --- congestion management --- distributed generation curtailment --- demand side management --- demand response --- cyber-physical systems --- dynamic pricing --- load forecasting --- attack detection --- photovoltaics --- distributed energy resources (DERs) --- grid impact --- power quality --- low-voltage distribution network --- inverter regulation --- electric vehicles --- uncontrolled charging --- delayed charging --- controlled charging --- V2G --- V2B --- V2H --- peak shaving --- valley filling --- renewable energy sources
Choose an application
The electric power sector is poised for transformative changes. Improvements in the cost and performance of a range of distributed energy generation (DG) technologies and the potential for breakthroughs in distributed energy storage (DS) are creating new options for onsite power generation and storage, driving increasing adoption and impacting utility distribution system operations. In addition, changing uses and use patterns for electricity—from plug-in electric vehicles (EVs) to demand response (DR)—are altering demands placed on the electric power system. Finally, the infusion of new information and communications technology (ICT) into the electric system and its markets is enabling the collection of immense volumes of data on power sector operations and use; unprecedented control of generation, networks, and loads; and new opportunities for the delivery of energy services. In this Special Issue of Energies, research papers on topics related to the integration of distributed energy resources (DG, DS, EV, and DR) are included. From technologies to software tools to system-wide evaluations, the impacts of all aforementioned distributed resources on both operation and planning are examined.
History of engineering & technology --- machine learning --- microgrids --- optimisation methods --- power systems --- reinforcement learning --- high penetration --- renewable energy --- adaptability planning --- source-grid coordination --- renewable electricity distribution for public space --- sustainability assessment model --- integrated assessment for public space --- tripartite altruism --- urban renewable energy --- ecological infrastructures --- Micro-grids --- continuity of supply --- power distribution --- power system planning --- decentralized control --- small hydropower plants --- microgrid --- emergency control --- recloser --- synchronous coupler --- power systems stability --- power system operation --- power system security --- renewable energy integration --- load flow analysis --- congestion management --- distributed generation curtailment --- demand side management --- demand response --- cyber-physical systems --- dynamic pricing --- load forecasting --- attack detection --- photovoltaics --- distributed energy resources (DERs) --- grid impact --- power quality --- low-voltage distribution network --- inverter regulation --- electric vehicles --- uncontrolled charging --- delayed charging --- controlled charging --- V2G --- V2B --- V2H --- peak shaving --- valley filling --- renewable energy sources --- machine learning --- microgrids --- optimisation methods --- power systems --- reinforcement learning --- high penetration --- renewable energy --- adaptability planning --- source-grid coordination --- renewable electricity distribution for public space --- sustainability assessment model --- integrated assessment for public space --- tripartite altruism --- urban renewable energy --- ecological infrastructures --- Micro-grids --- continuity of supply --- power distribution --- power system planning --- decentralized control --- small hydropower plants --- microgrid --- emergency control --- recloser --- synchronous coupler --- power systems stability --- power system operation --- power system security --- renewable energy integration --- load flow analysis --- congestion management --- distributed generation curtailment --- demand side management --- demand response --- cyber-physical systems --- dynamic pricing --- load forecasting --- attack detection --- photovoltaics --- distributed energy resources (DERs) --- grid impact --- power quality --- low-voltage distribution network --- inverter regulation --- electric vehicles --- uncontrolled charging --- delayed charging --- controlled charging --- V2G --- V2B --- V2H --- peak shaving --- valley filling --- renewable energy sources
Listing 1 - 7 of 7 |
Sort by
|