Listing 1 - 10 of 12 | << page >> |
Sort by
|
Choose an application
Functional analysis, the branch that lies between mathematical analysis and statistics, has many applications in the field of engineering and processes. Thus, this book presents several applications carried out from this perspective, as well as various works of a theoretical nature that take a further step so that researchers can use these models with high precision.
Research & information: general --- Mathematics & science --- functional data analysis --- statistical process control --- control chart --- data depth --- nonparametric control chart --- energy efficiency --- air pollution --- non-normal data --- outlier --- Lagrange interpolation --- unit circle --- nodal systems --- separation properties --- perturbed roots of the unity --- convergence --- retrofitting --- refurbishment --- vectorial analysis --- average run length --- median absolute deviation --- photolithography --- Shewhart --- Tukey --- FTIR-ATR --- FDA --- vector analysis --- wine spirit --- ageing technology --- micro-oxygenation --- wood --- oak --- chestnut --- ageing time --- pollution episodes --- functional data --- bivariate analysis --- uncertainty region --- generalized additive models --- functional data analysis --- statistical process control --- control chart --- data depth --- nonparametric control chart --- energy efficiency --- air pollution --- non-normal data --- outlier --- Lagrange interpolation --- unit circle --- nodal systems --- separation properties --- perturbed roots of the unity --- convergence --- retrofitting --- refurbishment --- vectorial analysis --- average run length --- median absolute deviation --- photolithography --- Shewhart --- Tukey --- FTIR-ATR --- FDA --- vector analysis --- wine spirit --- ageing technology --- micro-oxygenation --- wood --- oak --- chestnut --- ageing time --- pollution episodes --- functional data --- bivariate analysis --- uncertainty region --- generalized additive models
Choose an application
Functional analysis, the branch that lies between mathematical analysis and statistics, has many applications in the field of engineering and processes. Thus, this book presents several applications carried out from this perspective, as well as various works of a theoretical nature that take a further step so that researchers can use these models with high precision.
functional data analysis --- statistical process control --- control chart --- data depth --- nonparametric control chart --- energy efficiency --- air pollution --- non-normal data --- outlier --- Lagrange interpolation --- unit circle --- nodal systems --- separation properties --- perturbed roots of the unity --- convergence --- retrofitting --- refurbishment --- vectorial analysis --- average run length --- median absolute deviation --- photolithography --- Shewhart --- Tukey --- FTIR-ATR --- FDA --- vector analysis --- wine spirit --- ageing technology --- micro-oxygenation --- wood --- oak --- chestnut --- ageing time --- pollution episodes --- functional data --- bivariate analysis --- uncertainty region --- generalized additive models
Choose an application
This lavishly illustrated book provides a hands-on, step-by-step introduction to the intriguing mathematics of symmetry. Instead of breaking up patterns into blocks-a sort of potato-stamp method-Frank Farris offers a completely new waveform approach that enables you to create an endless variety of rosettes, friezes, and wallpaper patterns: dazzling art images where the beauty of nature meets the precision of mathematics.Featuring more than 100 stunning color illustrations and requiring only a modest background in math, Creating Symmetry begins by addressing the enigma of a simple curve, whose curious symmetry seems unexplained by its formula. Farris describes how complex numbers unlock the mystery, and how they lead to the next steps on an engaging path to constructing waveforms. He explains how to devise waveforms for each of the 17 possible wallpaper types, and then guides you through a host of other fascinating topics in symmetry, such as color-reversing patterns, three-color patterns, polyhedral symmetry, and hyperbolic symmetry. Along the way, Farris demonstrates how to marry waveforms with photographic images to construct beautiful symmetry patterns as he gradually familiarizes you with more advanced mathematics, including group theory, functional analysis, and partial differential equations. As you progress through the book, you'll learn how to create breathtaking art images of your own.Fun, accessible, and challenging, Creating Symmetry features numerous examples and exercises throughout, as well as engaging discussions of the history behind the mathematics presented in the book.
Symmetry (Mathematics) --- Symmetry (Art) --- Abstract algebra. --- Addition. --- Algorithm. --- Antisymmetry. --- Arc length. --- Boundary value problem. --- Cartesian coordinate system. --- Circular motion. --- Circumference. --- Coefficient. --- Complex analysis. --- Complex multiplication. --- Complex number. --- Complex plane. --- Computation. --- Coordinate system. --- Coset. --- Cyclic group. --- Derivative. --- Diagonal. --- Diagram (category theory). --- Dihedral group. --- Division by zero. --- Domain coloring. --- Dot product. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein integer. --- Epicycloid. --- Equation. --- Euler's formula. --- Even and odd functions. --- Exponential function. --- Fourier series. --- Frieze group. --- Function (mathematics). --- Function composition. --- Function space. --- Gaussian integer. --- Geometry. --- Glide reflection. --- Group (mathematics). --- Group theory. --- Homomorphism. --- Horocycle. --- Hyperbolic geometry. --- Ideal point. --- Integer. --- Lattice (group). --- Linear interpolation. --- Local symmetry. --- M. C. Escher. --- Main diagonal. --- Mathematical proof. --- Mathematical structure. --- Mathematics. --- Mirror symmetry (string theory). --- Mirror symmetry. --- Morphing. --- Natural number. --- Normal subgroup. --- Notation. --- Ordinary differential equation. --- Parallelogram. --- Parametric equation. --- Parametrization. --- Periodic function. --- Plane symmetry. --- Plane wave. --- Point group. --- Polynomial. --- Power series. --- Projection (linear algebra). --- Pythagorean triple. --- Quantity. --- Quotient group. --- Real number. --- Reciprocal lattice. --- Rectangle. --- Reflection symmetry. --- Right angle. --- Ring of integers. --- Rotational symmetry. --- Scientific notation. --- Special case. --- Square lattice. --- Subgroup. --- Summation. --- Symmetry group. --- Symmetry. --- Tetrahedron. --- Theorem. --- Translational symmetry. --- Trigonometric functions. --- Unique factorization domain. --- Unit circle. --- Variable (mathematics). --- Vector space. --- Wallpaper group. --- Wave packet. --- Abstract algebra. --- Addition. --- Algorithm. --- Antisymmetry. --- Arc length. --- Boundary value problem. --- Cartesian coordinate system. --- Circular motion. --- Circumference. --- Coefficient. --- Complex analysis. --- Complex multiplication. --- Complex number. --- Complex plane. --- Computation. --- Coordinate system. --- Coset. --- Cyclic group. --- Derivative. --- Diagonal. --- Diagram (category theory). --- Dihedral group. --- Division by zero. --- Domain coloring. --- Dot product. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein integer. --- Epicycloid. --- Equation. --- Euler's formula. --- Even and odd functions. --- Exponential function. --- Fourier series. --- Frieze group. --- Function (mathematics). --- Function composition. --- Function space. --- Gaussian integer. --- Geometry. --- Glide reflection. --- Group (mathematics). --- Group theory. --- Homomorphism. --- Horocycle. --- Hyperbolic geometry. --- Ideal point. --- Integer. --- Lattice (group). --- Linear interpolation. --- Local symmetry. --- M. C. Escher. --- Main diagonal. --- Mathematical proof. --- Mathematical structure. --- Mathematics. --- Mirror symmetry (string theory). --- Mirror symmetry. --- Morphing. --- Natural number. --- Normal subgroup. --- Notation. --- Ordinary differential equation. --- Parallelogram. --- Parametric equation. --- Parametrization. --- Periodic function. --- Plane symmetry. --- Plane wave. --- Point group. --- Polynomial. --- Power series. --- Projection (linear algebra). --- Pythagorean triple. --- Quantity. --- Quotient group. --- Real number. --- Reciprocal lattice. --- Rectangle. --- Reflection symmetry. --- Right angle. --- Ring of integers. --- Rotational symmetry. --- Scientific notation. --- Special case. --- Square lattice. --- Subgroup. --- Summation. --- Symmetry group. --- Symmetry. --- Tetrahedron. --- Theorem. --- Translational symmetry. --- Trigonometric functions. --- Unique factorization domain. --- Unit circle. --- Variable (mathematics). --- Vector space. --- Wallpaper group. --- Wave packet.
Choose an application
This book gives a new foundation for the theory of links in 3-space modeled on the modern developmentby Jaco, Shalen, Johannson, Thurston et al. of the theory of 3-manifolds. The basic construction is a method of obtaining any link by "splicing" links of the simplest kinds, namely those whose exteriors are Seifert fibered or hyperbolic. This approach to link theory is particularly attractive since most invariants of links are additive under splicing.Specially distinguished from this viewpoint is the class of links, none of whose splice components is hyperbolic. It includes all links constructed by cabling and connected sums, in particular all links of singularities of complex plane curves. One of the main contributions of this monograph is the calculation of invariants of these classes of links, such as the Alexander polynomials, monodromy, and Seifert forms.
Algebraic geometry --- Differential geometry. Global analysis --- Link theory. --- Curves, Plane. --- SINGULARITIES (Mathematics) --- Curves, Plane --- Invariants --- Link theory --- Singularities (Mathematics) --- Geometry, Algebraic --- Low-dimensional topology --- Piecewise linear topology --- Higher plane curves --- Plane curves --- Invariants. --- 3-sphere. --- Alexander Grothendieck. --- Alexander polynomial. --- Algebraic curve. --- Algebraic equation. --- Algebraic geometry. --- Algebraic surface. --- Algorithm. --- Ambient space. --- Analytic function. --- Approximation. --- Big O notation. --- Call graph. --- Cartesian coordinate system. --- Characteristic polynomial. --- Closed-form expression. --- Cohomology. --- Computation. --- Conjecture. --- Connected sum. --- Contradiction. --- Coprime integers. --- Corollary. --- Curve. --- Cyclic group. --- Determinant. --- Diagram (category theory). --- Diffeomorphism. --- Dimension. --- Disjoint union. --- Eigenvalues and eigenvectors. --- Equation. --- Equivalence class. --- Euler number. --- Existential quantification. --- Exterior (topology). --- Fiber bundle. --- Fibration. --- Foliation. --- Fundamental group. --- Geometry. --- Graph (discrete mathematics). --- Ground field. --- Homeomorphism. --- Homology sphere. --- Identity matrix. --- Integer matrix. --- Intersection form (4-manifold). --- Isolated point. --- Isolated singularity. --- Jordan normal form. --- Knot theory. --- Mathematical induction. --- Monodromy matrix. --- Monodromy. --- N-sphere. --- Natural transformation. --- Newton polygon. --- Newton's method. --- Normal (geometry). --- Notation. --- Pairwise. --- Parametrization. --- Plane curve. --- Polynomial. --- Power series. --- Projective plane. --- Puiseux series. --- Quantity. --- Rational function. --- Resolution of singularities. --- Riemann sphere. --- Riemann surface. --- Root of unity. --- Scientific notation. --- Seifert surface. --- Set (mathematics). --- Sign (mathematics). --- Solid torus. --- Special case. --- Stereographic projection. --- Submanifold. --- Summation. --- Theorem. --- Three-dimensional space (mathematics). --- Topology. --- Torus knot. --- Torus. --- Tubular neighborhood. --- Unit circle. --- Unit vector. --- Unknot. --- Variable (mathematics).
Choose an application
This work is a fresh presentation of the Ahlfors-Weyl theory of holomorphic curves that takes into account some recent developments in Nevanlinna theory and several complex variables. The treatment is differential geometric throughout, and assumes no previous acquaintance with the classical theory of Nevanlinna. The main emphasis is on holomorphic curves defined over Riemann surfaces, which admit a harmonic exhaustion, and the main theorems of the subject are proved for such surfaces. The author discusses several directions for further research.
Analytic functions. --- Functions, Meromorphic. --- Value distribution theory. --- Meromorphic functions --- Functions, Analytic --- Functions, Monogenic --- Functions, Regular --- Regular functions --- Functions of complex variables --- Series, Taylor's --- Distribution of values theory --- Functions, Entire --- Functions, Meromorphic --- Addition. --- Algebraic curve. --- Algebraic number. --- Atlas (topology). --- Binomial coefficient. --- Cauchy–Riemann equations. --- Compact Riemann surface. --- Compact space. --- Complex manifold. --- Complex projective space. --- Computation. --- Continuous function (set theory). --- Covariant derivative. --- Critical value. --- Curvature form. --- Diagram (category theory). --- Differential form. --- Differential geometry of surfaces. --- Differential geometry. --- Dimension. --- Divisor. --- Essential singularity. --- Euler characteristic. --- Existential quantification. --- Fiber bundle. --- Gaussian curvature. --- Geodesic curvature. --- Geometry. --- Grassmannian. --- Harmonic function. --- Hermann Weyl. --- Hermitian manifold. --- Holomorphic function. --- Homology (mathematics). --- Hyperbolic manifold. --- Hyperplane. --- Hypersurface. --- Improper integral. --- Intersection number (graph theory). --- Isometry. --- Line integral. --- Manifold. --- Meromorphic function. --- Minimal surface. --- Nevanlinna theory. --- One-form. --- Open problem. --- Open set. --- Orthogonal complement. --- Parameter. --- Picard theorem. --- Product metric. --- Q.E.D. --- Remainder. --- Riemann sphere. --- Riemann surface. --- Smoothness. --- Special case. --- Submanifold. --- Subset. --- Tangent space. --- Tangent. --- Theorem. --- Three-dimensional space (mathematics). --- Unit circle. --- Unit vector. --- Vector field. --- Volume element. --- Volume form. --- Fonctions de plusieurs variables complexes
Choose an application
This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.
Functions of complex variables --- Holomorphic mappings --- Riemann surfaces --- Fonctions d'une variable complexe --- Applications holomorphes --- Riemann, surfaces de --- Holomorphic mappings. --- Mappings, Holomorphic --- Functions of complex variables. --- Riemann surfaces. --- Surfaces, Riemann --- Functions --- Functions of several complex variables --- Mappings (Mathematics) --- Complex variables --- Elliptic functions --- Functions of real variables --- Absolute value. --- Addition. --- Algebraic equation. --- Attractor. --- Automorphism. --- Beltrami equation. --- Blaschke product. --- Boundary (topology). --- Branched covering. --- Coefficient. --- Compact Riemann surface. --- Compact space. --- Complex analysis. --- Complex number. --- Complex plane. --- Computation. --- Connected component (graph theory). --- Connected space. --- Constant function. --- Continued fraction. --- Continuous function. --- Coordinate system. --- Corollary. --- Covering space. --- Cross-ratio. --- Derivative. --- Diagram (category theory). --- Diameter. --- Diffeomorphism. --- Differentiable manifold. --- Disjoint sets. --- Disjoint union. --- Disk (mathematics). --- Division by zero. --- Equation. --- Euler characteristic. --- Existential quantification. --- Exponential map (Lie theory). --- Fundamental group. --- Harmonic function. --- Holomorphic function. --- Homeomorphism. --- Hyperbolic geometry. --- Inequality (mathematics). --- Integer. --- Inverse function. --- Irrational rotation. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Lebesgue measure. --- Lecture. --- Limit point. --- Line segment. --- Linear map. --- Linearization. --- Mandelbrot set. --- Mathematical analysis. --- Maximum modulus principle. --- Metric space. --- Monotonic function. --- Montel's theorem. --- Normal family. --- Open set. --- Orbifold. --- Parameter space. --- Parameter. --- Periodic point. --- Point at infinity. --- Polynomial. --- Power series. --- Proper map. --- Quadratic function. --- Rational approximation. --- Rational function. --- Rational number. --- Real number. --- Riemann sphere. --- Riemann surface. --- Root of unity. --- Rotation number. --- Schwarz lemma. --- Scientific notation. --- Sequence. --- Simply connected space. --- Special case. --- Subgroup. --- Subsequence. --- Subset. --- Summation. --- Tangent space. --- Theorem. --- Topological space. --- Topology. --- Uniform convergence. --- Uniformization theorem. --- Unit circle. --- Unit disk. --- Upper half-plane. --- Winding number.
Choose an application
In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students.
Geodesics (Mathematics) --- Polynomials. --- Mappings (Mathematics) --- Maps (Mathematics) --- Functions --- Functions, Continuous --- Topology --- Transformations (Mathematics) --- Algebra --- Geometry, Differential --- Global analysis (Mathematics) --- Mathematics --- Absolute value. --- Affine transformation. --- Algebraic function. --- Analytic continuation. --- Analytic function. --- Arithmetic. --- Automorphism. --- Big O notation. --- Bounded set (topological vector space). --- C0. --- Calculation. --- Canonical map. --- Change of variables. --- Chebyshev polynomials. --- Combinatorics. --- Commutative property. --- Complex number. --- Complex plane. --- Complex quadratic polynomial. --- Conformal map. --- Conjecture. --- Conjugacy class. --- Conjugate points. --- Connected component (graph theory). --- Connected space. --- Continuous function. --- Corollary. --- Covering space. --- Critical point (mathematics). --- Dense set. --- Derivative. --- Diffeomorphism. --- Dimension. --- Disjoint sets. --- Disjoint union. --- Disk (mathematics). --- Equicontinuity. --- Estimation. --- Existential quantification. --- Fibonacci. --- Functional equation. --- Fundamental domain. --- Generalization. --- Great-circle distance. --- Hausdorff distance. --- Holomorphic function. --- Homeomorphism. --- Homotopy. --- Hyperbolic function. --- Imaginary number. --- Implicit function theorem. --- Injective function. --- Integer. --- Intermediate value theorem. --- Interval (mathematics). --- Inverse function. --- Irreducible polynomial. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Limit of a sequence. --- Linear map. --- Local diffeomorphism. --- Mathematical induction. --- Mathematical proof. --- Maxima and minima. --- Meromorphic function. --- Moduli (physics). --- Monomial. --- Monotonic function. --- Natural number. --- Neighbourhood (mathematics). --- Open set. --- Parameter. --- Periodic function. --- Periodic point. --- Phase space. --- Point at infinity. --- Polynomial. --- Projection (mathematics). --- Quadratic function. --- Quadratic. --- Quasiconformal mapping. --- Renormalization. --- Riemann sphere. --- Riemann surface. --- Schwarzian derivative. --- Scientific notation. --- Subsequence. --- Theorem. --- Theory. --- Topological conjugacy. --- Topological entropy. --- Topology. --- Union (set theory). --- Unit circle. --- Unit disk. --- Upper and lower bounds. --- Upper half-plane. --- Z0.
Choose an application
Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to develop a mathematical description of the motion of a surface by its mean curvature. This mathematical description encompasses, among other subtleties, those of changing geometries and instantaneous mass losses.Originally published in 1978.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Geometric measure theory. --- Surfaces. --- Curvature. --- Measure theory --- Calculus --- Curves --- Surfaces --- Curved surfaces --- Geometry --- Shapes --- Affine transformation. --- Approximation. --- Asymptote. --- Barrier function. --- Besicovitch covering theorem. --- Big O notation. --- Bounded set (topological vector space). --- Boundedness. --- Calculation. --- Cauchy–Schwarz inequality. --- Characteristic function (probability theory). --- Compactness theorem. --- Completing the square. --- Concave function. --- Convex set. --- Convolution. --- Crystal structure. --- Curve. --- Derivative. --- Diameter. --- Differentiable function. --- Differentiable manifold. --- Differential geometry. --- Dimension. --- Domain of a function. --- Dyadic rational. --- Equivalence relation. --- Estimation. --- Euclidean space. --- Existential quantification. --- Exterior (topology). --- First variation. --- Gaussian curvature. --- Geometry. --- Grain boundary. --- Graph of a function. --- Grassmannian. --- Harmonic function. --- Hausdorff measure. --- Heat equation. --- Heat kernel. --- Heat transfer. --- Homotopy. --- Hypersurface. --- Hölder's inequality. --- Infimum and supremum. --- Initial condition. --- Lebesgue measure. --- Lebesgue point. --- Linear space (geometry). --- Lipschitz continuity. --- Mean curvature. --- Melting point. --- Microstructure. --- Monotonic function. --- Natural number. --- Nonparametric statistics. --- Order of integration (calculus). --- Order of integration. --- Order of magnitude. --- Parabolic partial differential equation. --- Paraboloid. --- Partial differential equation. --- Permutation. --- Perpendicular. --- Pointwise. --- Probability. --- Quantity. --- Quotient space (topology). --- Radon measure. --- Regularity theorem. --- Retract. --- Rewriting. --- Riemannian manifold. --- Right angle. --- Second derivative. --- Sectional curvature. --- Semi-continuity. --- Smoothness. --- Subsequence. --- Subset. --- Support (mathematics). --- Tangent space. --- Taylor's theorem. --- Theorem. --- Theory. --- Topology. --- Total curvature. --- Translational symmetry. --- Uniform boundedness. --- Unit circle. --- Unit vector. --- Upper and lower bounds. --- Variable (mathematics). --- Varifold. --- Vector field. --- Weight function. --- Without loss of generality.
Choose an application
Everybody knows that mathematics is indispensable to physics--imagine where we'd be today if Einstein and Newton didn't have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist.Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can. Did you know it's possible to derive the Pythagorean theorem by spinning a fish tank filled with water? Or that soap film holds the key to determining the cheapest container for a given volume? Or that the line of best fit for a data set can be found using a mechanical contraption made from a rod and springs? Levi demonstrates how to use physical intuition to solve these and other fascinating math problems. More than half the problems can be tackled by anyone with precalculus and basic geometry, while the more challenging problems require some calculus. This one-of-a-kind book explains physics and math concepts where needed, and includes an informative appendix of physical principles.The Mathematical Mechanic will appeal to anyone interested in the little-known connections between mathematics and physics and how both endeavors relate to the world around us.
Mathematical physics. --- Problem solving. --- MATHEMATICS / General. --- Methodology --- Psychology --- Decision making --- Executive functions (Neuropsychology) --- Physical mathematics --- Physics --- Mathematics --- Addition. --- Analytic function. --- Angular acceleration. --- Angular velocity. --- Axle. --- Calculation. --- Capacitor. --- Cartesian coordinate system. --- Cauchy's integral formula. --- Center of mass (relativistic). --- Center of mass. --- Centroid. --- Ceva's theorem. --- Clockwise. --- Complex analysis. --- Complex number. --- Conservation of energy. --- Convex curve. --- Curvature. --- Curve. --- Cylinder (geometry). --- Derivative. --- Diameter. --- Differential geometry. --- Dimension. --- Division by zero. --- Dot product. --- Eigenvalues and eigenvectors. --- Electric current. --- Equation. --- Euler's formula. --- Euler–Lagrange equation. --- Fermat's principle. --- Friction. --- Fundamental theorem of calculus. --- Gaussian curvature. --- Generating function. --- Geodesic curvature. --- Geometry. --- Gravity. --- Green's theorem. --- Heat flux. --- Hinge. --- Hooke's law. --- Horizontal plane. --- Hypotenuse. --- Inductance. --- Instant. --- Kinetic energy. --- Line integral. --- Linear map. --- Mathematics. --- Mechanics. --- Moment of inertia. --- Newton's laws of motion. --- Normal (geometry). --- Ohm's law. --- Optics. --- Partial derivative. --- Potential energy. --- Proportionality (mathematics). --- Pythagorean theorem. --- Quadratic function. --- Quantity. --- Rectangle. --- Resistor. --- Right angle. --- Right triangle. --- Second law of thermodynamics. --- Semicircle. --- Series and parallel circuits. --- Sign (mathematics). --- Slinky. --- Snell's law. --- Soap bubble. --- Soap film. --- Special case. --- Spring (device). --- Stiffness. --- Summation. --- Surface area. --- Surface tension. --- Tangent space. --- Tangent. --- Telescope. --- Theorem. --- Thought experiment. --- Tractrix. --- Trapezoid. --- Trigonometric functions. --- Two-dimensional gas. --- Uncertainty principle. --- Unit circle. --- Unit vector. --- Vacuum. --- Variable (mathematics). --- Vector field. --- Voltage drop. --- Voltage. --- Wavefront.
Choose an application
This volume deals with novel high-quality research results of a wide class of mathematical models with applications in engineering, nature, and social sciences. Analytical and numeric, deterministic and uncertain dimensions are treated. Complex and multidisciplinary models are treated, including novel techniques of obtaining observation data and pattern recognition. Among the examples of treated problems, we encounter problems in engineering, social sciences, physics, biology, and health sciences. The novelty arises with respect to the mathematical treatment of the problem. Mathematical models are built, some of them under a deterministic approach, and other ones taking into account the uncertainty of the data, deriving random models. Several resulting mathematical representations of the models are shown as equations and systems of equations of different types: difference equations, ordinary differential equations, partial differential equations, integral equations, and algebraic equations. Across the chapters of the book, a wide class of approaches can be found to solve the displayed mathematical models, from analytical to numeric techniques, such as finite difference schemes, finite volume methods, iteration schemes, and numerical integration methods.
Research & information: general --- Mathematics & science --- mathematical modeling --- infiltration well --- differential equations --- porous medium --- fractal conductivity model --- incomplete rankings --- Kendall's tau --- permutation graph --- competitive balance --- Spotify --- collocation --- volterra integral equation --- highly oscillatory --- convergence --- areal porosity --- volumetric porosity --- fractal area-volume relationship --- tortuosity factor --- joint probability --- corrugated box printing machine --- modified Delphi method --- analytic network process (ANP) --- supplier --- nonlinear system --- iterative method --- divided difference operator --- stability --- parameter plane --- dynamical plane --- random hyperbolic model --- random laplace transform --- numerical integration --- monte carlo method --- numerical simulation --- talbot algorithm --- stochastic perturbations --- random nonlinear oscillator --- maximum entropy principle --- probability density function --- stationary Gaussian noise --- random mean square parabolic model --- finite degree of randomness --- random finite difference scheme --- relativistic harmonic oscillator --- kinematics of a particle --- special relativity --- nonlinear problems in mechanics --- equations of motion in gravitational theory --- virus propagation --- stochastic modeling --- Gillespie algorithm --- conservative formulation --- multidimensional fragmentation equation --- weight functions --- finite volume scheme --- contamination plume --- advection-diffusion --- universal curves --- Dirichlet-to-Neumann map --- Schrödinger operator --- contagion effect --- difference equation --- elections --- labor condition --- mathematical compartmental discrete model --- political corruption --- revolving doors --- sensitivity analysis --- simulation --- numerical methods --- integro-interpolation method --- splitting method --- convergence of models --- standard deviation of the error --- diabetic retinopathy --- ocular fundus --- laser coagulation --- optical coherence tomography --- image processing --- segmentation --- safe treatment --- Hermite interpolation --- nodal systems --- unit circle --- circular membrane --- fluid-structure interaction --- differential-integral equations --- power series method --- closed-form solution --- time series model --- wavelet transform --- ARIMA model --- neural network NARX --- ionospheric parameters --- courtyard --- climate change --- microclimate --- Support Vector Regression (SVR) --- machine learning --- matrix functions --- matrix hyperbolic tangent --- matrix exponential --- Taylor series --- matrix polynomial evaluation --- mathematical modeling --- infiltration well --- differential equations --- porous medium --- fractal conductivity model --- incomplete rankings --- Kendall's tau --- permutation graph --- competitive balance --- Spotify --- collocation --- volterra integral equation --- highly oscillatory --- convergence --- areal porosity --- volumetric porosity --- fractal area-volume relationship --- tortuosity factor --- joint probability --- corrugated box printing machine --- modified Delphi method --- analytic network process (ANP) --- supplier --- nonlinear system --- iterative method --- divided difference operator --- stability --- parameter plane --- dynamical plane --- random hyperbolic model --- random laplace transform --- numerical integration --- monte carlo method --- numerical simulation --- talbot algorithm --- stochastic perturbations --- random nonlinear oscillator --- maximum entropy principle --- probability density function --- stationary Gaussian noise --- random mean square parabolic model --- finite degree of randomness --- random finite difference scheme --- relativistic harmonic oscillator --- kinematics of a particle --- special relativity --- nonlinear problems in mechanics --- equations of motion in gravitational theory --- virus propagation --- stochastic modeling --- Gillespie algorithm --- conservative formulation --- multidimensional fragmentation equation --- weight functions --- finite volume scheme --- contamination plume --- advection-diffusion --- universal curves --- Dirichlet-to-Neumann map --- Schrödinger operator --- contagion effect --- difference equation --- elections --- labor condition --- mathematical compartmental discrete model --- political corruption --- revolving doors --- sensitivity analysis --- simulation --- numerical methods --- integro-interpolation method --- splitting method --- convergence of models --- standard deviation of the error --- diabetic retinopathy --- ocular fundus --- laser coagulation --- optical coherence tomography --- image processing --- segmentation --- safe treatment --- Hermite interpolation --- nodal systems --- unit circle --- circular membrane --- fluid-structure interaction --- differential-integral equations --- power series method --- closed-form solution --- time series model --- wavelet transform --- ARIMA model --- neural network NARX --- ionospheric parameters --- courtyard --- climate change --- microclimate --- Support Vector Regression (SVR) --- machine learning --- matrix functions --- matrix hyperbolic tangent --- matrix exponential --- Taylor series --- matrix polynomial evaluation
Listing 1 - 10 of 12 | << page >> |
Sort by
|