Narrow your search

Library

FARO (7)

KU Leuven (7)

LUCA School of Arts (7)

Odisee (7)

Thomas More Kempen (7)

Thomas More Mechelen (7)

UCLL (7)

ULB (7)

ULiège (7)

VIVES (7)

More...

Resource type

book (17)


Language

English (17)


Year
From To Submit

2022 (6)

2021 (3)

2020 (6)

2019 (2)

Listing 1 - 10 of 17 << page
of 2
>>
Sort by

Book
Nanostructure Based Sensors for Gas Sensing: from Devices to Systems
Authors: ---
ISBN: 3039216376 3039216368 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The development of solid state gas sensors based on microtransducers and nanostructured sensing materials is the key point in the design of portable measurement systems able to reach sensing and identification performance comparable with analytical ones. In such a context several efforts must be spent of course in the development of the sensing material, but also in the choice of the transducer mechanism and its structure, in the electrical characterization of the performance and in the design of suitable measurement setups. This call for papers invites researchers worldwide to report about their novel results on the most recent advances and overview in design and measurements for applications in gas sensors, along with their relevant features and technological aspects. Original research papers are welcome (but not limited) on all aspects that focus on the most recent advances in: (i) basic principles and modeling of gas and VOCs sensors; (ii) new gas sensor principles and technologies; (iii) Characterization and measurements methodologies; (iv) transduction and sampling systems; (vi) package optimization; (vi) gas sensor based systems and applications.


Book
Chromatography-the Ultimate Analytical Tool
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since its early introduction by the Russian botanist Mikhail Semyonovich Tsvet, chromatography has been undoubtedly the most powerful analytical tool in analytical chemistry. Separation, qualitative analysis, and quantitative analysis can be achieved by choosing the right conditions. Thus, numerous gas chromatographic, liquid chromatographic, and supercritical fluid chromatographic methods have been developed and applied for most types of samples and most kinds of analytes. Additionally, older varieties such as paper chromatography and thin-layer chromatography were pioneer analytical techniques in many laboratories. Especially when hyphenated to spectrometric techniques, chromatography also allows the identification of separated analytes in a single run. Highly sophisticated equipment can answer all analytical problems very quickly. Chromatographers cooperate with many scientific fields and give their lights to medical doctors, veterinarians, food scientists, biologists, dentists, archaeologists, etc. In this Special Issue, analytical chemists were invited to prove that chromatography-based separation techniques are the ultimate analytical tool and their significant contribution is reflected in ten interesting articles.

Keywords

Research & information: general --- Chemistry --- Analytical chemistry --- polyamine --- steroid --- breast cancer --- liquid chromatography–tandem mass spectrometry --- serum --- photoaging --- proteomics --- genomics --- Swietenia macrophylla --- UV irradiation --- keratinocytes --- epidermal layer --- cosmetics --- natural product --- LC-MS/MS --- metabolomics --- targeted analysis --- nontargeted analysis --- sample preparation --- derivatization --- validation --- biomarkers --- mycophenolate mofetil --- mycophenolic acid --- pediatric patients --- limited sampling strategy --- multiple linear regression --- therapeutic drug monitoring --- almonds --- HPLC --- authenticity --- PCA --- tocopherols --- phenolics --- method validation --- Miang --- catechins --- caffeine --- gallic acid --- walnut septum --- UAE --- SPE --- flavonoids --- functional --- HPLC-DAD --- biotin acceptor peptide (BAP) --- biotin ligase BirA --- liquid chromatography tandem mass spectrometry (LC-MS/MS) --- multiple reaction monitoring (MRM) --- protein–protein interactions (PPIs) --- proximity utilizing biotinylation (PUB) --- greener HPTLC --- paracetamol --- simultaneous determination --- microflow LC-MS --- mLC-MS/MS --- liver fibrosis --- hemopexin --- biomarker --- polyamine --- steroid --- breast cancer --- liquid chromatography–tandem mass spectrometry --- serum --- photoaging --- proteomics --- genomics --- Swietenia macrophylla --- UV irradiation --- keratinocytes --- epidermal layer --- cosmetics --- natural product --- LC-MS/MS --- metabolomics --- targeted analysis --- nontargeted analysis --- sample preparation --- derivatization --- validation --- biomarkers --- mycophenolate mofetil --- mycophenolic acid --- pediatric patients --- limited sampling strategy --- multiple linear regression --- therapeutic drug monitoring --- almonds --- HPLC --- authenticity --- PCA --- tocopherols --- phenolics --- method validation --- Miang --- catechins --- caffeine --- gallic acid --- walnut septum --- UAE --- SPE --- flavonoids --- functional --- HPLC-DAD --- biotin acceptor peptide (BAP) --- biotin ligase BirA --- liquid chromatography tandem mass spectrometry (LC-MS/MS) --- multiple reaction monitoring (MRM) --- protein–protein interactions (PPIs) --- proximity utilizing biotinylation (PUB) --- greener HPTLC --- paracetamol --- simultaneous determination --- microflow LC-MS --- mLC-MS/MS --- liver fibrosis --- hemopexin --- biomarker


Book
Silver Nano/Microparticles : Modification and Applications 2.0
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Currently, nano/microparticles are widely used in various fields. Silver particles are one of the most vital of the various particles, due to their unique optical–physical–chemical properties. The developed materials have been proposed for use in various fields such as in biosensors, diagnostics, imaging, catalysts, solar cells, and as antibacterials. Their unique, size-dependent plasmonic properties render the particles superior in biomedical applications. This importance of silver materials led to the first edition of Silver Nano/Microparticles: Modification and Applications, which was successfully published last year with ten outstanding papers. This second edition of the Special Issue also provides original contributions detailing the synthesis, modification, and applications of silver materials. Eleven outstanding papers which describe examples of the most recent advances in silver nano/microparticles are included.

Keywords

Technology: general issues --- antiviral property --- healthcare workers (HCWs) --- medical application --- microbicidal property --- silver nanoparticles (Ag NPs) --- cytotoxicity --- silver nanoparticles --- Candida albicans --- poly(methyl methacrylate) --- dental prostheses --- ultrasensitive detection --- thiram --- internal standard --- gold-silver-alloy-embedded silica nanoparticles --- bamboo --- Ag/TiO2 nanocomposites --- self-sacrificing reduction --- antifungal activity --- cyclophanes --- resorcin[4]arenes --- calix[n]arenes --- thiacalix[n]arenes --- pillar[n]arenes --- self-assembly --- silver nanostructures --- silver islands film --- silver deposition --- metal enhanced luminescence --- silver nanowires --- nanomaterials --- biocompatibility --- AgNP --- peptide array --- biomineralization --- green synthesis --- SIF --- photosynthetic complexes --- biohybrid structures --- MEF --- healthcare workers --- hydroxyl radical --- microbicidal activity --- silver nanoparticles (AgNPs) --- ultraviolet (UV) irradiation --- histamine --- fish --- gold-silver alloy-embedded silica nanoparticles --- surface-enhanced Raman scattering (SERS) --- reliable and sensitive detection --- antiviral property --- healthcare workers (HCWs) --- medical application --- microbicidal property --- silver nanoparticles (Ag NPs) --- cytotoxicity --- silver nanoparticles --- Candida albicans --- poly(methyl methacrylate) --- dental prostheses --- ultrasensitive detection --- thiram --- internal standard --- gold-silver-alloy-embedded silica nanoparticles --- bamboo --- Ag/TiO2 nanocomposites --- self-sacrificing reduction --- antifungal activity --- cyclophanes --- resorcin[4]arenes --- calix[n]arenes --- thiacalix[n]arenes --- pillar[n]arenes --- self-assembly --- silver nanostructures --- silver islands film --- silver deposition --- metal enhanced luminescence --- silver nanowires --- nanomaterials --- biocompatibility --- AgNP --- peptide array --- biomineralization --- green synthesis --- SIF --- photosynthetic complexes --- biohybrid structures --- MEF --- healthcare workers --- hydroxyl radical --- microbicidal activity --- silver nanoparticles (AgNPs) --- ultraviolet (UV) irradiation --- histamine --- fish --- gold-silver alloy-embedded silica nanoparticles --- surface-enhanced Raman scattering (SERS) --- reliable and sensitive detection


Book
New Trends in Photo(Electro)catalysis : From Wastewater Treatment to Energy Production
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on new trends in photo-electrocatalysis, specifically addressed to the remediation of wastewater and energy production. The remediation of wastewater, up to a level that is acceptable for discharge into receiving waterbodies, involves an ever-growing demand of energy, so effective and low-energy treatment processes are highly desirable. Among the other treatments, photo- and photo-electrochemical treatment processes may be considered as advanced oxidation processes (AOP), which are based on the generation of OH radicals, strong oxidizing agents able to indiscriminately degrade even the most persistent organic compounds. Photocatalysis and photo-electrocatalysis can be considered as effective methods for organic degradation, especially when the semiconductor is active in the range of visible light. Several results are presented on new morphologies and structures, which allow more photoactive, visibly responsive, and stable materials, as well as studies on combined processes in which photo- or photo-electrochemistry contribute to an increase in the sustainability of the whole process, lowering costs and achieving the most valuable final products. In view of the circular economy concept, microbial fuel cell systems are also considered as possible way to recover energy from organic pollutants contained in wastewater.

Keywords

Research & information: general --- Biology, life sciences --- composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu–B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni–Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties --- n/a --- Cu-B alloy --- Ni-Co catalyst


Book
Silver Nano/Microparticles : Modification and Applications 2.0
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Currently, nano/microparticles are widely used in various fields. Silver particles are one of the most vital of the various particles, due to their unique optical–physical–chemical properties. The developed materials have been proposed for use in various fields such as in biosensors, diagnostics, imaging, catalysts, solar cells, and as antibacterials. Their unique, size-dependent plasmonic properties render the particles superior in biomedical applications. This importance of silver materials led to the first edition of Silver Nano/Microparticles: Modification and Applications, which was successfully published last year with ten outstanding papers. This second edition of the Special Issue also provides original contributions detailing the synthesis, modification, and applications of silver materials. Eleven outstanding papers which describe examples of the most recent advances in silver nano/microparticles are included.


Book
Chromatography-the Ultimate Analytical Tool
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since its early introduction by the Russian botanist Mikhail Semyonovich Tsvet, chromatography has been undoubtedly the most powerful analytical tool in analytical chemistry. Separation, qualitative analysis, and quantitative analysis can be achieved by choosing the right conditions. Thus, numerous gas chromatographic, liquid chromatographic, and supercritical fluid chromatographic methods have been developed and applied for most types of samples and most kinds of analytes. Additionally, older varieties such as paper chromatography and thin-layer chromatography were pioneer analytical techniques in many laboratories. Especially when hyphenated to spectrometric techniques, chromatography also allows the identification of separated analytes in a single run. Highly sophisticated equipment can answer all analytical problems very quickly. Chromatographers cooperate with many scientific fields and give their lights to medical doctors, veterinarians, food scientists, biologists, dentists, archaeologists, etc. In this Special Issue, analytical chemists were invited to prove that chromatography-based separation techniques are the ultimate analytical tool and their significant contribution is reflected in ten interesting articles.


Book
New Trends in Photo(Electro)catalysis : From Wastewater Treatment to Energy Production
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on new trends in photo-electrocatalysis, specifically addressed to the remediation of wastewater and energy production. The remediation of wastewater, up to a level that is acceptable for discharge into receiving waterbodies, involves an ever-growing demand of energy, so effective and low-energy treatment processes are highly desirable. Among the other treatments, photo- and photo-electrochemical treatment processes may be considered as advanced oxidation processes (AOP), which are based on the generation of OH radicals, strong oxidizing agents able to indiscriminately degrade even the most persistent organic compounds. Photocatalysis and photo-electrocatalysis can be considered as effective methods for organic degradation, especially when the semiconductor is active in the range of visible light. Several results are presented on new morphologies and structures, which allow more photoactive, visibly responsive, and stable materials, as well as studies on combined processes in which photo- or photo-electrochemistry contribute to an increase in the sustainability of the whole process, lowering costs and achieving the most valuable final products. In view of the circular economy concept, microbial fuel cell systems are also considered as possible way to recover energy from organic pollutants contained in wastewater.

Keywords

composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu–B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni–Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties --- n/a --- Cu-B alloy --- Ni-Co catalyst


Book
Silver Nano/Microparticles : Modification and Applications 2.0
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Currently, nano/microparticles are widely used in various fields. Silver particles are one of the most vital of the various particles, due to their unique optical–physical–chemical properties. The developed materials have been proposed for use in various fields such as in biosensors, diagnostics, imaging, catalysts, solar cells, and as antibacterials. Their unique, size-dependent plasmonic properties render the particles superior in biomedical applications. This importance of silver materials led to the first edition of Silver Nano/Microparticles: Modification and Applications, which was successfully published last year with ten outstanding papers. This second edition of the Special Issue also provides original contributions detailing the synthesis, modification, and applications of silver materials. Eleven outstanding papers which describe examples of the most recent advances in silver nano/microparticles are included.


Book
Chromatography-the Ultimate Analytical Tool
Authors: ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since its early introduction by the Russian botanist Mikhail Semyonovich Tsvet, chromatography has been undoubtedly the most powerful analytical tool in analytical chemistry. Separation, qualitative analysis, and quantitative analysis can be achieved by choosing the right conditions. Thus, numerous gas chromatographic, liquid chromatographic, and supercritical fluid chromatographic methods have been developed and applied for most types of samples and most kinds of analytes. Additionally, older varieties such as paper chromatography and thin-layer chromatography were pioneer analytical techniques in many laboratories. Especially when hyphenated to spectrometric techniques, chromatography also allows the identification of separated analytes in a single run. Highly sophisticated equipment can answer all analytical problems very quickly. Chromatographers cooperate with many scientific fields and give their lights to medical doctors, veterinarians, food scientists, biologists, dentists, archaeologists, etc. In this Special Issue, analytical chemists were invited to prove that chromatography-based separation techniques are the ultimate analytical tool and their significant contribution is reflected in ten interesting articles.


Book
New Trends in Photo(Electro)catalysis : From Wastewater Treatment to Energy Production
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on new trends in photo-electrocatalysis, specifically addressed to the remediation of wastewater and energy production. The remediation of wastewater, up to a level that is acceptable for discharge into receiving waterbodies, involves an ever-growing demand of energy, so effective and low-energy treatment processes are highly desirable. Among the other treatments, photo- and photo-electrochemical treatment processes may be considered as advanced oxidation processes (AOP), which are based on the generation of OH radicals, strong oxidizing agents able to indiscriminately degrade even the most persistent organic compounds. Photocatalysis and photo-electrocatalysis can be considered as effective methods for organic degradation, especially when the semiconductor is active in the range of visible light. Several results are presented on new morphologies and structures, which allow more photoactive, visibly responsive, and stable materials, as well as studies on combined processes in which photo- or photo-electrochemistry contribute to an increase in the sustainability of the whole process, lowering costs and achieving the most valuable final products. In view of the circular economy concept, microbial fuel cell systems are also considered as possible way to recover energy from organic pollutants contained in wastewater.

Keywords

Research & information: general --- Biology, life sciences --- composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu-B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni-Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties --- composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu-B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni-Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties

Listing 1 - 10 of 17 << page
of 2
>>
Sort by