Listing 1 - 6 of 6 |
Sort by
|
Choose an application
Choose an application
Acetylene compounds --- Acétylène --- Composés --- 547.12 --- 547.12 Carbon bonds. Arrangement of carbon atoms in the molecule --- Carbon bonds. Arrangement of carbon atoms in the molecule --- Acétylène --- Composés --- Organic compounds. --- Triple bond
Choose an application
546.057 --- Compounds, Inorganic --- Inorganic chemicals --- Inorganic chemistry--?.057 --- 546.057 Inorganic chemistry--?.057 --- 547.057 --- Inorganic compounds --- -Organometallic compounds --- -#WSCH:AAS1 --- Metallo-organic compounds --- Metalloids, Organic --- Metalorganic compounds --- Organometalloids --- Organic compounds --- Chemicals --- Chemistry, Inorganic --- 547.057 Organic chemistry--?.057 --- Organic chemistry--?.057 --- Synthesis --- #WSCH:AAS1 --- Synthesis. --- Organometallic compounds --- Composés organométalliques --- Synthèse --- Organometallic compounds. --- Rare earth metal compounds. --- Organometallic compounds - Synthesis --- Inorganic compounds - Synthesis --- ALKALI METAL COMPOUNDS --- ALKALINE EARTH COMPOUNDS --- GROUP IIIA ELEMENT COMPOUNDS --- GROUP IVA ELEMENT COMPOUNDS --- PREPARATION --- Actinide compounds --- Cyclopentadiene derivatives --- LITERATURE --- INSTRUMENTATION --- LIGANDS --- TRANSITION METAL COMPOUNDS --- REACTIONS --- Transition metal complexes --- PHOSPHORUS COMPOUNDS --- ARSENIC COMPOUNDS --- ANTIMONY COMPOUNDS --- BISMUTH COMPOUNDS --- Cadmium --- Cadmium compounds --- Copper --- Copper compounds --- Gold --- Gold compounds --- Mercury --- Mercury compounds --- Silver --- Silver compounds --- Zinc --- Zinc compounds --- SULFUR COMPOUNDS --- SELENIUM COMPOUNDS --- TELLURIUM COMPOUNDS --- INORGANIC COMPOUNDS --- ORGANOMETALLIC COMPOUNDS --- Sigma bond --- Transition metal carbonyl complexes --- Triple bond
Choose an application
The future of the precious metals is shiny and resistant. Although expensive and potentially replaceable by transition metal catalysts, precious metal implementation in research and industry shows potential. These metals catalyze oxidation and hydrogenation due to their dissociative behavior toward hydrogen and oxygen, dehydrogenation, isomerization, and aromatization, etc. The precious metal catalysts, especially platinum-based catalysts, are involved in a variety of industrial processes. Examples include Pt–Rh gauze for nitric acid production, the Pt/Al2O3 catalyst for cyclohexane and propylene production, and Pd/Al2O3 catalysts for petrochemical hydropurification reactions, etc. A quick search of the number of published articles in the last five years containing a combination of corresponding “metals” (Pt, Pd, Ru, Rh and Au) and “catalysts” as keywords indicates the importance of the Pt catalysts, but also the continuous increase in the contribution of Pd and Au. This Special Issue reveals the importance of precious metals in catalysis and focuses on mono- and bi-metallic formulations of any supported precious metals and their promotional catalytic effect of other transition metals. The application of precious metals in diverse reactions, either homogeneous or heterogeneous, and studies of the preparation, characterization, and applications of the supported precious metal catalysts, are presented.
sustainable ammonia synthesis --- Pt3Sn alloy --- alkenols --- n/a --- PtSn alloy --- propane dehydrogenation --- chelate --- photodegradation --- gold nanoparticles --- photochemical --- alkynols --- triple bond electron charge --- palladium catalyst --- Pt/Al2O3 --- 2-methyl-3-butyn-2-ol --- hydrogen storage --- X-ray crystallography --- ruthenium --- platinum dispersion --- gold catalysts --- reduction temperature --- DOC --- palladium --- renewable hydrogen --- 1-propanol --- 4-hydroxyproline --- glycerol --- 2-?-benzylproline --- proline --- hydrogen bonding --- oxidative coupling --- glucose oxidation --- stabilizing agent --- titania --- 4-fluoroproline --- turnover frequency --- porous carbons --- Pt–Sn/Al2O3 --- P25@Pd --- catalyst synthesis --- 2-propanol --- amino acid --- azetidine --- precious metals --- clay --- gas phase hydrogenation --- CNTs --- 3-butyn-2-ol --- Pd/Al2O3 --- heterogeneous enantioselective hydrogenation --- XPS --- microwave --- caesium --- perovskite --- CO oxidation --- Au–TiO2 --- dodecahydro-N-ethylcarbazole --- phenol photo-degradation --- pipecolinic acid --- 3-butyn-1-ol --- acetophenone --- drying --- palladium catalysts --- N-methylproline --- dehydrogenation --- PVA --- aging --- hydrodechlorination --- hydrogenolysis --- dispersion --- direct reduction --- core-shell --- Pt-Sn/Al2O3 --- Au-TiO2
Choose an application
Derivatization is one of the most widely used sample pretreatment techniques in Analytical Chemistry and Chemical Analysis. Reagent-based or reagent-less schemes offer improved detectability of target compounds, modification of the chromatographic properties and/or the stabilization of sensitive compounds until analysis. Either coupled with separation techniques or as a “stand alone” analytical procedure, derivatization offers endless possibilities in all aspects of analytical applications.
tyrosine kinase inhibitors --- chloranilic acid --- charge-transfer reaction --- 96-microwell spectrophotometric assay --- high-throughput pharmaceutical analysis --- biogenic amines --- Lycium barbarum L. --- HPLC --- derivatization --- amino acids --- esterification --- GC–MS --- pentafluoropropionic anhydride --- stability --- toluene --- pigment --- linseed oil --- derivatisation --- quantification --- P/S ratio --- A/P ratio --- ∑D --- GC-MS --- ureide --- BSTFA --- creatine --- creatinine --- silylation --- TMS --- validation --- low-molecular-weight thiols --- human serum albumin --- α-lipoic acid --- blood plasma --- monobromobimane --- reduction --- sodium borohydride --- high-performance liquid chromatography --- fluorescence detection --- taurine --- glutamine --- clams --- high-resolution mass spectrometry --- nerve agents --- methylation --- chemical warfare agents --- sarin --- Novichoks --- 2-naphthalenethiol --- sulforaphane --- HPLC-UV/Vis --- pharmacokinetics --- acetonitrile-related adducts --- acetylenic lipids --- double and triple bond localization --- in-source derivatization --- mass spectrometry --- acetazolamide --- carbonic anhydrase --- enhancement --- inhibition --- pentafluorobenzyl bromide --- chiral metabolomics --- rice water --- d-amino acids --- enantiomer separation --- dimethyl labeling --- homocysteine thiolactone --- homocysteine --- zone fluidics --- o-phthalaldehyde --- fluorosurfactant-modified gold nanoparticles
Choose an application
Derivatization is one of the most widely used sample pretreatment techniques in Analytical Chemistry and Chemical Analysis. Reagent-based or reagent-less schemes offer improved detectability of target compounds, modification of the chromatographic properties and/or the stabilization of sensitive compounds until analysis. Either coupled with separation techniques or as a “stand alone” analytical procedure, derivatization offers endless possibilities in all aspects of analytical applications.
Research & information: general --- Chemistry --- Analytical chemistry --- tyrosine kinase inhibitors --- chloranilic acid --- charge-transfer reaction --- 96-microwell spectrophotometric assay --- high-throughput pharmaceutical analysis --- biogenic amines --- Lycium barbarum L. --- HPLC --- derivatization --- amino acids --- esterification --- GC–MS --- pentafluoropropionic anhydride --- stability --- toluene --- pigment --- linseed oil --- derivatisation --- quantification --- P/S ratio --- A/P ratio --- ∑D --- GC-MS --- ureide --- BSTFA --- creatine --- creatinine --- silylation --- TMS --- validation --- low-molecular-weight thiols --- human serum albumin --- α-lipoic acid --- blood plasma --- monobromobimane --- reduction --- sodium borohydride --- high-performance liquid chromatography --- fluorescence detection --- taurine --- glutamine --- clams --- high-resolution mass spectrometry --- nerve agents --- methylation --- chemical warfare agents --- sarin --- Novichoks --- 2-naphthalenethiol --- sulforaphane --- HPLC-UV/Vis --- pharmacokinetics --- acetonitrile-related adducts --- acetylenic lipids --- double and triple bond localization --- in-source derivatization --- mass spectrometry --- acetazolamide --- carbonic anhydrase --- enhancement --- inhibition --- pentafluorobenzyl bromide --- chiral metabolomics --- rice water --- d-amino acids --- enantiomer separation --- dimethyl labeling --- homocysteine thiolactone --- homocysteine --- zone fluidics --- o-phthalaldehyde --- fluorosurfactant-modified gold nanoparticles
Listing 1 - 6 of 6 |
Sort by
|