Narrow your search

Library

KU Leuven (2)

KBR (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

VIVES (1)

VUB (1)


Resource type

book (3)


Language

English (3)


Year
From To Submit

2017 (1)

2014 (1)

1988 (1)

Listing 1 - 3 of 3
Sort by
Transposition : forty-third symposium of the Society for general microbiology held at Warwick, April 1988
Authors: --- --- ---
ISBN: 0521354641 Year: 1988 Volume: vol 43 Publisher: Cambridge London New York Cambridge University Press


Book
Cellular Responses to Stress.
Authors: --- ---
ISBN: 0691636036 1400865042 0691607451 9781400865048 Year: 2014 Publisher: Princeton Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Cellular Responses to Stress brings together a group of scientists who work on different but interrelated aspects of cellular stress responses. The book provides state-of-the-art information on the wide spectrum of ways in which cells can respond to different forms of stress induced by chemicals, oxidants, and DNA-damaging agents. Mechanisms are described that involve altered uptake and efflux of chemical agents, intracellular detoxification, and DNA damage responses. Many of these changes trigger a cascade of reactions mediated by stress-activated signaling pathways, which have the capacity to determine whether a cell will survive or die. The spectrum of topics covered in this book aims to provide a broad overview of our current knowledge of the different forms of adaptive response systems.It is hoped that this text will stimulate further research to establish the relative cellular role of specific response pathways and will enable us to gain a deeper understanding of the mechanisms that allow cells to live or die. This book will be valued by university researchers at all levels, industrial scientists in the pharmaceutical and biotechnology industries, and clinical researchers.Originally published in 1999.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Stress (Physiology) --- Cell metabolism --- Cellular control mechanisms --- Cells --- Metabolism --- Regulation --- AMPK. --- ASK1. --- Actin. --- Activation. --- Angiogenesis. --- Antibody. --- Antigen. --- Apoptosis. --- Autoimmunity. --- Autophosphorylation. --- C-Fos. --- C-Jun N-terminal kinases. --- C-terminus. --- Cell Cycle Arrest. --- Cell Line, Transformed. --- Cell cycle. --- Cell membrane. --- Cell migration. --- Cell surface receptor. --- Cellular differentiation. --- Cellular stress response. --- Conformational change. --- Cytochrome P450. --- Cytokine receptor. --- Cytokine. --- Cytotoxicity. --- DNA-PKcs. --- Drug metabolism. --- Ectopic expression. --- Effector (biology). --- Endonuclease. --- Enzyme. --- Epidermal growth factor receptor. --- Epidermal growth factor. --- Extracellular signal–regulated kinases. --- Fibroblast growth factor. --- Gene expression. --- Gene therapy. --- Gene. --- Germinal center. --- Glutathione S-transferase. --- HMG-CoA reductase. --- Heat shock. --- Histidine kinase. --- Hormone-sensitive lipase. --- Hsp27. --- Immortalised cell line. --- Immunodeficiency. --- Immunoglobulins. --- Immunoprecipitation. --- In vitro. --- Inducer. --- Inflammation. --- Jurkat cells. --- Kinase. --- Lymphotoxin. --- Macrophage colony-stimulating factor. --- Mechanism of action. --- Mechanistic target of rapamycin. --- Metabolism. --- Mitogen-activated protein kinase kinase. --- Mitogen-activated protein kinase. --- Mitogen. --- Mitosis. --- Model organism. --- Neuropeptide. --- Neurotoxin. --- Osmotic shock. --- Oxidative phosphorylation. --- Oxidative stress. --- P38 mitogen-activated protein kinases. --- Pathogenesis. --- Peptide. --- Peroxidase. --- Phosphatase. --- Phosphoinositide 3-kinase. --- Phosphorylation cascade. --- Phosphorylation. --- Post-translational modification. --- Protease. --- Protein kinase. --- Protein phosphorylation. --- Protein synthesis inhibitor. --- Protein. --- Proteolysis. --- RNA interference. --- Receptor (biochemistry). --- Receptor tyrosine kinase. --- Repressor. --- Response element. --- Signal transduction. --- Ternary Complex Factors. --- Thrombin. --- Transcription factor. --- Transcriptional regulation. --- Transfection. --- Transposable element. --- Tumor necrosis factor superfamily. --- Turgor pressure. --- Vascular endothelial growth factor.


Book
Molecular mechanisms for sensory signals : recognition and transformation
Author:
ISBN: 0691628939 0691603928 Year: 2017 Publisher: Princeton, [New Jersey] : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Pursuing the questions of how we learn and how memory is made, Edward Kosower introduces a novel and rich approach to connecting molecular properties with the biological properties that enable us to write and read, to create culture and ethics, and to think. Here he examines what happens within a single cell in reaction to external stimuli, and shows the parallels between single cell and multicellular responses. To address the problem of "learning," Kosower explains the molecular mechanisms of responses to input from taste, olfactory, and visual receptors. He then shows how these and other processes serve as the basis for memory. This study covers such signals for the molecular process of learning as pheromones (the molecular signals mediating behavior), light (activates the G-protein receptor, rhodopsin), and acetylcholine (opens the nicotinic acetylcholine receptor). Kosower's discussion of the structure and function of these complex molecules has direct implications for such areas as molecular neurobiology, bioorganic chemistry, and drug design, in elucidating approaches to the structure of drug targets.Originally published in 1991.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Molecular neurobiology. --- Cellular signal transduction. --- Molecular recognition. --- Action potential. --- Activation. --- Amino acid. --- Antibody. --- Bilayer. --- Binding protein. --- Biological Assay. --- Biological membrane. --- Biological neural network. --- Biomolecular structure. --- Biosynthesis. --- Catalysis. --- Caudate nucleus. --- Cell surface receptor. --- Chemical change. --- Chemical modification. --- Chemical synapse. --- Chemoreceptor. --- Chemotaxis. --- Chromatin. --- Chromophore. --- Conformational change. --- Creatine kinase. --- Demethylation. --- Electron transport chain. --- Enzyme. --- GABA receptor. --- GABAA receptor. --- Ganglion cell. --- Gel electrophoresis. --- Gene product. --- Globulin. --- Glycine receptor. --- Golgi apparatus. --- Golgi cell. --- Ion channel. --- LTP induction. --- Libration (molecule). --- Ligand (biochemistry). --- Lysine. --- Lysozyme. --- Mechanism of action. --- Mechanoreceptor. --- Membrane potential. --- Methylation. --- Methyltransferase. --- Microvillus. --- Molecular configuration. --- Molecular electronic transition. --- Molecular graphics. --- Molecular sieve. --- Molecule. --- Motor neuron. --- Muscarinic acetylcholine receptor. --- Mutagen. --- Neurofilament. --- Neuroglia. --- Neurokinin A. --- Neuron. --- Neuropeptide. --- Neurotransmitter. --- Nicotinic acetylcholine receptor. --- Olfactory receptor neuron. --- Organism. --- Peptide. --- Permease. --- Pheromone binding protein. --- Pheromone. --- Phosphodiesterase. --- Phosphorylation. --- Physical organic chemistry. --- Plasma protein binding. --- Post-translational modification. --- Protein methylation. --- Protein phosphorylation. --- Protein primary structure. --- Protein structure. --- Protein synthesis inhibitor. --- Protein. --- Proteolysis. --- RNA interference. --- Receptor (biochemistry). --- Receptor modulator. --- Receptors, Neurotransmitter. --- Regulation of gene expression. --- Retina. --- Rhodopsin kinase. --- Rhodopsin. --- Sensory neuron. --- Side chain. --- Signal processing. --- Signal transduction. --- Sodium channel. --- Stimulus (physiology). --- Synapsin I. --- Synapsis. --- Synaptosome. --- Teratology. --- Transducin. --- Transposable element.

Listing 1 - 3 of 3
Sort by