Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
Myocardial infraction occurs when blood flow to destination of the heart muscle is insufficient. This decrease is due to partial or complete occlusion of coronary arteries by atherosclerotic plaque and/or thrombus. To ensure a flow rate adapted to the metabolic needs of the body, the heart changes its structure through a complex process called ventricular remodelling. Remodelling is characterized by a ventricular dilation, an hypertrophy of cardiomyocytes and the development of a reparative and reactive fibrosis. Initially beneficial, it eventually leads to ventricular dysfunction and heart failure. Cardiac fibroblasts represent 60-70% of the total cellular population of the heart. They play a fundamental role in cardiac physiology by ensuring the structural integrity of the heart through a controlled turnover of the extracellular matrix. After myocardial infarction, various stimuli lead to their proliferation and differentiation in hyper-metabolic cells (the myofibroblasts). Angiotensin II (AgII) and Transforming Growth Factor β (TGFβ) are key mediators of these processes. These molecules activate several signaling pathways (MAPK, Smad, RhoA/ROK, NADPH axidase) resulting in stimulation of profibrotic gene expression. Several studies have shown that AMP-activated protein kinase (AMPK) could interact with these pathways and control cellular processes such as proliferation/apoptosis and differentiation. In this work, we have studied the role of AMPK in human cardiac fibroblast myodifferentiation. Through the use of AMPK-α1 knockout mice (KO), we have also investigated the role of this protein kinase in vivo, in the development of fibrosis after myocardial infarction. These mice have been subjected to coronary ligation causing a myocardial infarction. The expression of fibrotic genes has been measured by qRT-PCR in the infarcted and the remote zone isolated from wild-type (WT) and KO hearts. Meanwhile, cardiac function has been assessed by echocardiography. We show increased expression of collagen I and III, “Plasminogen Activator Inhibitor-1 (PAI-1) and the “connective tissue factor (CTGF) in the infarcted region of hearts from KO mice versus WT mice (similar basal expression level). By contrast, there is no significant change of expression in the remote zone. By echocardiography, we show a greater ventricular dilation on KO mice, compared with WT mice. Our results argue for a protective role of AMPK as regards of cardiac fibrosis and remodelling and are consistent with the data obtained in cultured human cardiac fibroblasts. In this model, we show that TGFβ-1 changes cell morphology and increases to about twice the level of expression of the alpha isoform smooth muscle actin (α-SMA), a marker of myodifferentiation. Preincubation with the A-769662 compound, a pharmacological activator of AMPK, prevents these changes. Phosphorylation of Smad3 induced by TGF-β1 is also reduced in these conditions and could contribute to the anti-fibrotic affects of AMPK activation in the infarcted heart L’infarctus du myocarde survient lorsque le flux sanguin à destination du muscle cardiaque est insuffisant. Cette diminution est due à l’occlusion partielle ou complète des artères coronaires par une plaque d’athérosclérose et/ou d’un thrombus. Afin d’assurer un débit adapté aux besoins métaboliques de l’organisme, le cœur modifie sa structure par un processus complexe appelé remodelage ventriculaire. Le remodelage est caractérisé par une dilatation de la chambre ventriculaire, une hypertrophie des cardiomyocytes et le développement d’une fibrose cicatricielle et interstitielle. Initialement bénéfique, il finit par entraîner une dysfonction ventriculaire qui peut conduire à long terme à une insuffisance cardiaque chronique. Les fibroblastes cardiaques représentent 60-70 % de la population cellulaire du cœur. Ils jouent un rôle fondamental dans la physiologie cardiaque en assurant le maintien de l’intégrité structurale du cœur à travers une prolifération contrôlée et un turnover de la matrice extracellulaire. Après un infarctus du myocarde, divers stimuli entraînent leur prolifération et leur différenciation en cellules hyper-métaboliques (les myofibroblastes). L’ angiotensine II (AgII) et le «Transforming Growth Factor β» (TGFβ) sont des médiateurs clés de ces processus. Ces molécules activent plusieurs voies de signalisation (MAPK, Smad, RhoA/ROK, NADPH oxydase) qui aboutissent à la stimulation de l’expression des gènes profibrotiques. Plusieurs études ont montré que l’AMP-activated protein kinase (AMPK) pouvait interagir avec certains de ces éléments de signalisation et contrôler des processus cellulaires comme la croissance, la prolifération/différenciation et l’apoptose. Dans ce travail de mémoire, nous avons étudié le rôle de l’AMPK dans la myodifférenciation des fibroblastes cardiaques humains. Grâce à l’utilisation de souris transgéniques AMPK α1-knockout (KO), nous avons également investigué le rôle de cette protéine kinase in vivo, dans le développement de la fibrose myocardique post-infarctus. Ces souris ont été soumises à une ligature de la coronaire provoquant un infarctus du myocarde. L’expression de plusieurs gènes fibrotiques dans les régions saine et infarcie du ventricule gauche a été mesurée par qRT-PCR. Parallèlement, la fonction cardiaque a été évaluée par échocardiographie. Nous montrons une expression augmentée de collagène I et III, du «Plasminogen Activator Inhibitor-1 » (PAl-1) et du «Connective Tissue Factor» (CTGF) dans la région infarcie des cœurs de souris KO versus la région infarcie des cœurs de souris contrôles (WT) (niveau d’expression basal similaire). Par contre, il n’y a aucun changement significatif d’expression dans la région saine des souris WT et KO. Les résultats de l’analyse échocardiographique montrent une dilatation du ventricule plus importante chez les souris KO, par rapport aux souris WT. Ces résultats, en faveur d’un rôle protecteur de l’AMPK vis-à-vis de la fibrose et du remodelage, sont en accord avec les données obtenues in vitro, dans des cultures de fibroblastes cardiaques humains. Nous montrons que le TGFf3-l modifie la morphologie des cellules et augmente d’environ deux fois le niveau d’expression de l’isoforme alpha de l’actine musculaire lisse (αSMA), un marqueur de myodifférenciation. Une préincubation avec le composé A-769662, un activateur pharmacologique de 1’AMPK, empêche ces changements. La phosphorylation de Smad3 induite par le TGFβ- 1 est également diminuée dans ces conditions et pourrait contribuer aux effets anti-fibrotiques d’une activation de 1’AMPK dans le cœur infarci
Myocardial Infarction --- Heart --- Transforming Growth Factors
Choose an application
This dissertation by Oliver Seifert explores the complex pathogenesis of keloids, focusing on the role of TGF-β signaling pathways and gene expression profiles in the condition. It examines how altered TGF-β subtype and receptor expressions contribute to keloid formation and progression. The study utilizes microarray analyses to identify unique gene expressions in keloid sites, offering potential targets for future treatments. Additionally, it assesses the quality of life impacts on patients, developing a specific questionnaire to measure psychological and physical impairments. The research aims to provide insights into extracellular matrix regulation and potential therapeutic strategies for keloids.
Choose an application
Choose an application
Choose an application
Transforming growth factors-beta --- GROWTH SUBSTANCES, congresses --- TRANSFORMING GROWTH FACTOR BETA, congresses --- Beta transforming growth factors --- TGF-beta (Peptide) --- Transforming growth factor beta --- Transforming growth factors --- Congresses. --- GROWTH SUBSTANCES --- TRANSFORMING GROWTH FACTOR BETA --- Growth substances --- Congresses
Choose an application
The recent isolation and identification of the TGFß receptors, as well as their intracellular mediating proteins, has driven the development of many new methodologies and techniques for the study of TGFß. In Transforming Growth Factor-Beta Protocols, Philip H. Howe and a group of well-versed experimentalists present the first major collection of indispensable classic and cutting-edge TGFß assays. Described in great detail to ensure robust and successful results, these readily reproducible techniques range from the growth inhibition assay for TGFß to methodologies for monitoring its interactions with the mediating proteins. Extensive notes discuss potential pitfalls and provide tips on how to avoid failures, and throughout, emphasis is given to detailing those technical steps critical for experimental success that are often omitted in the primary literature. Concise and highly practical, Transforming Growth Factor-Beta Protocols provides today's molecular and cell biologists-both expert and novice-with time-tested methods for the identification and analysis of the signal transduction pathways by which TGFß induces and modulates physiological behavior.
Transforming growth factors-beta --- Transforming growth factors. --- TGF (Peptides) --- Tumor growth factors --- Biological response modifiers --- Growth factors --- Beta transforming growth factors --- TGF-beta (Peptide) --- Transforming growth factor beta --- Transforming growth factors --- Cytology. --- Cell Biology. --- Cell biology --- Cellular biology --- Biology --- Cells --- Cytologists
Choose an application
Transforming growth factor-β (TGF-β) is a secreted polypeptide with multifunctional properties manifested during embryonic development, adult organ physiology, and pathobiology of major diseases, including cancer and fibrotic and cardiovascular diseases. The signaling pathway of TGF-β now is rather well understood. Continuing revelations in the mechanisms of action of TGF-β provide specific mechanistic examples of how human cells lose their controlled function and behave wrongly during the development of diverse diseases. Equally important, however, is the current promise of exploiting the TGF-β pathway in combating human disease. This book comprehensively covers major areas of human disease where the involvement of TGF-β is firmly established. Simultaneously, the book highlights major gaps in knowledge and the future directions of research that can benefit human medical science. The core set of diseases where TGF-β action is well documented and are included in the book are cancer and cardiovascular and fibrotic disorders. The central aim of the book is to stimulate young scientists to enter the prolific TGF-β field and find new solutions to the problems remaining in this area of study. For this purpose the book provides authoritative educational chapters that furnish a good introduction to the field for young doctoral students, postdocs, and clinical fellows. The book also serves as a valuable reference for the aficionados in the field, who can find accessible and well-illustrated material for their teaching and lecturing activities, via which the importance of TGF-β biology is disseminated to the world of science and to the public.
Cell differentiation. --- Cell proliferation. --- Transforming growth factors-beta. --- Biology --- Health & Biological Sciences --- Microbiology & Immunology --- Cytokines --- Pathophysiology. --- Beta transforming growth factors --- TGF-beta (Peptide) --- Transforming growth factor beta --- Life sciences. --- Cancer research. --- Cytokines. --- Growth factors. --- Cell biology. --- Life Sciences. --- Cytokines and Growth Factors. --- Cell Biology. --- Cancer Research. --- Cellular immunity --- Immune response --- Transforming growth factors --- Regulation
Choose an application
Transforming Growth Factor-ß in Cancer Therapy, Volumes 1 and 2, provides a compendium of findings about the role of transforming growth factor-ß (TGF-ß) in cancer treatment and therapy. The second volume, Cancer Treatment and Therapy, is divided into three parts. Part I examines transforming growth factor-ß in developing and advanced cancers. Part II details transforming growth factor-ß in cancer treatment and therapy. Part III includes an investigation into the development of inhibitors of transforming growth factor-ß signaling for therapy. This volume’s companion, Basic and Clinical Biology, examines transforming growth factor-ß signaling in normal physiology, cancer pathobiology, normal and tumor biology, and inflammation and fibrosis. Together, Transforming Growth Factor-ß in Cancer Therapy, Volumes 1 and 2, provide researchers and clinicians with a comprehensive and cutting-edge reference for the findings about the role of transforming growth factor-ß in biology and cancer treatment.
Medicine & Public Health. --- Oncology. --- Cancer Research. --- Cell Biology. --- Pathology. --- Medicine. --- Cytology. --- Médecine --- Cancérologie --- Pathologie --- Cytologie --- Carcinogenesis. --- Transforming growth factors-beta. --- Medicine --- Health & Biological Sciences --- Oncology --- Cancer --- Oncogenesis --- Pathogenesis of cancer --- Tumorigenesis --- Beta transforming growth factors --- TGF-beta (Peptide) --- Transforming growth factor beta --- Pathogenesis --- Cancer research. --- Cell biology. --- Cell biology --- Cellular biology --- Biology --- Cells --- Cytologists --- Disease (Pathology) --- Medical sciences --- Diseases --- Medicine, Preventive --- Tumors --- Cancer research --- Clinical sciences --- Medical profession --- Human biology --- Life sciences --- Pathology --- Physicians --- Genetic toxicology --- Transforming growth factors --- Oncology .
Choose an application
Inhibin --- Inhibine --- #ABIB:aeco --- Biochemie --- Eiwitten --- Organische chemie --- Biochemie. --- Eiwitten. --- Organische chemie. --- Glycoproteins --- Hormones, Sex --- Peptide hormones --- Transforming growth factors-beta
Choose an application
Transforming Growth Factor-ß in Cancer Therapy, Volumes 1 and 2, provide a compendium of findings about the role of transforming growth factor-ß (TGF-ß) in cancer treatment and therapy. The first volume, Basic and Clinical Biology, is divided into three parts. Part I presents basic concepts of transforming growth factor-ß signaling in normal physiology and cancer pathobiology. Part II investigates transforming growth factor-ß superfamily members in normal and tumor biology. Part III details transforming growth factor-ß in inflammation and fibrosis. This volume’s companion, Cancer Treatment and Therapy, examines transforming growth factor-ß in several developing and advanced cancers and discusses methods of treatment and therapy. Together, Transforming Growth Factor-ß in Cancer Therapy, Volumes 1 and 2, provide researchers and clinicians with a comprehensive and cutting-edge reference for the findings about the role of transforming growth factor-ß in biology and cancer treatment.
Medicine & Public Health. --- Oncology. --- Cell Biology. --- Cancer Research. --- Pharmacology/Toxicology. --- Medicine. --- Toxicology. --- Cytology. --- Médecine --- Cancérologie --- Toxicologie --- Cytologie --- Carcinogenesis. --- Critical Care. --- Perioperative Care. --- Transforming growth factors-beta. --- Transforming growth factors-beta --- Carcinogenesis --- Oncology --- Animal Biochemistry --- Human Anatomy & Physiology --- Medicine --- Health & Biological Sciences --- Beta transforming growth factors --- TGF-beta (Peptide) --- Transforming growth factor beta --- Cancer research. --- Pharmacology. --- Cell biology. --- Cell biology --- Cellular biology --- Biology --- Cells --- Cytologists --- Tumors --- Drug effects --- Medical pharmacology --- Medical sciences --- Chemicals --- Chemotherapy --- Drugs --- Pharmacy --- Cancer research --- Clinical sciences --- Medical profession --- Human biology --- Life sciences --- Pathology --- Physicians --- Physiological effect --- Transforming growth factors --- Oncology . --- Pharmacology --- Poisoning --- Poisons --- Toxicology
Listing 1 - 10 of 13 | << page >> |
Sort by
|