Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

VIVES (2)

FARO (1)

ULB (1)

ULiège (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2020 (3)

2001 (1)

Listing 1 - 4 of 4
Sort by
Inverse problems for kinetic and other evolution equations
Author:
ISBN: 3110940906 9783110940909 9789067643450 9783110363975 9067643459 Year: 2001 Publisher: Utrecht, The Netherlands ; Boston, Massachusetts : VSP,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This monograph deals with methods of studying multidimensional inverse problems for kinetic and other evolution equations, in particular transfer equations. The methods used are applied to concrete inverse problems, especially multidimensional inverse problems applicable in linear and nonlinear statements. A significant part of the book contains formulas and relations for solving inverse problems, including formulas for the solution and coefficients of kinetic equations, differential-difference equations, nonlinear evolution equations, and second order equations.


Book
Design of Heat Exchangers for Heat Pump Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Heat pumps (HPs) allow for providing heat without direct combustion, in both civil and industrial applications. They are very efficient systems that, by exploiting electrical energy, greatly reduce local environmental pollution and CO2 global emissions. The fact that electricity is a partially renewable resource and because the coefficient of performance (COP) can be as high as four or more, means that HPs can be nearly carbon neutral for a full sustainable future. The proper selection of the heat source and the correct design of the heat exchangers is crucial for attaining high HP efficiencies. Heat exchangers (also in terms of HP control strategies) are hence one of the main elements of HPs, and improving their performance enhances the effectiveness of the whole system. Both the heat transfer and pressure drop have to be taken into account for the correct sizing, especially in the case of mini- and micro-geometries, for which traditional models and correlations can not be applied. New models and measurements are required for best HPs system design, including optimization strategies for energy exploitation, temperature control, and mechanical reliability. Thus, a multidisciplinary approach of the analysis is requested and become the future challenge.


Book
Design of Heat Exchangers for Heat Pump Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Heat pumps (HPs) allow for providing heat without direct combustion, in both civil and industrial applications. They are very efficient systems that, by exploiting electrical energy, greatly reduce local environmental pollution and CO2 global emissions. The fact that electricity is a partially renewable resource and because the coefficient of performance (COP) can be as high as four or more, means that HPs can be nearly carbon neutral for a full sustainable future. The proper selection of the heat source and the correct design of the heat exchangers is crucial for attaining high HP efficiencies. Heat exchangers (also in terms of HP control strategies) are hence one of the main elements of HPs, and improving their performance enhances the effectiveness of the whole system. Both the heat transfer and pressure drop have to be taken into account for the correct sizing, especially in the case of mini- and micro-geometries, for which traditional models and correlations can not be applied. New models and measurements are required for best HPs system design, including optimization strategies for energy exploitation, temperature control, and mechanical reliability. Thus, a multidisciplinary approach of the analysis is requested and become the future challenge.


Book
Design of Heat Exchangers for Heat Pump Applications
Authors: ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Heat pumps (HPs) allow for providing heat without direct combustion, in both civil and industrial applications. They are very efficient systems that, by exploiting electrical energy, greatly reduce local environmental pollution and CO2 global emissions. The fact that electricity is a partially renewable resource and because the coefficient of performance (COP) can be as high as four or more, means that HPs can be nearly carbon neutral for a full sustainable future. The proper selection of the heat source and the correct design of the heat exchangers is crucial for attaining high HP efficiencies. Heat exchangers (also in terms of HP control strategies) are hence one of the main elements of HPs, and improving their performance enhances the effectiveness of the whole system. Both the heat transfer and pressure drop have to be taken into account for the correct sizing, especially in the case of mini- and micro-geometries, for which traditional models and correlations can not be applied. New models and measurements are required for best HPs system design, including optimization strategies for energy exploitation, temperature control, and mechanical reliability. Thus, a multidisciplinary approach of the analysis is requested and become the future challenge.

Listing 1 - 4 of 4
Sort by