Listing 1 - 10 of 34 | << page >> |
Sort by
|
Choose an application
First published in 1975, this classic book gives a systematic account of transcendental number theory, that is those numbers which cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory enriching many branches of pure mathematics. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalisation of the Thue-Siegel-Roth theorem, of Shidlovsky's work on Siegel's |E|-functions and of Sprindzuk's solution to the Mahler conjecture. The volume was revised in 1979: however Professor Baker has taken this further opportunity to update the book including new advances in the theory and many new references.
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
Choose an application
First published in 1975, this classic book gives a systematic account of transcendental number theory, that is, the theory of those numbers that cannot be expressed as the roots of algebraic equations having rational coefficients. Their study has developed into a fertile and extensive theory, which continues to see rapid progress today. Expositions are presented of theories relating to linear forms in the logarithms of algebraic numbers, of Schmidt's generalization of the Thue-Siegel-Roth theorem, of Shidlovsky's work on Siegel's E-functions and of Sprindžuk's solution to the Mahler conjecture. This edition includes an introduction written by David Masser describing Baker's achievement, surveying the content of each chapter and explaining the main argument of Baker's method in broad strokes. A new afterword lists recent developments related to Baker's work.
Choose an application
This is an account of the proceedings of a very successful symposium of Transcendental Number Theory held in Durham in 1986. Most of the leading international specialists were present and the lectures reflected the great advances that have taken place in this area. Indeed, the evolution of transcendence into a fertile theory with numerous and widespread applications has been one of the most exciting developments of modern mathematics. The papers cover all the main branches of the subject, and include not only definitive research but valuable survey articles. The work as a whole is an important contribution to mathematics and will be of considerable influence in the further direction of transcendence theory as well as an authoritative account of its current state.
Choose an application
Listing 1 - 10 of 34 | << page >> |
Sort by
|