Listing 1 - 10 of 14 | << page >> |
Sort by
|
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
Technology: general issues --- Energy industries & utilities --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
Technology: general issues --- Energy industries & utilities --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Choose an application
Electronic engineering and design innovation are both academic and practical engineering fields that involve systematic technological materialization through scientific principles and engineering designs. Technological innovation via electronic engineering includes electrical circuits and devices, computer science and engineering, communications and information processing, and electrical engineering communications. The Special Issue selected excellent papers presented at the International Conference on Knowledge Innovation and Invention 2018 (IEEE ICKII 2018) on the topic of electronics and their applications. This conference was held on Jeju Island, South Korea, 23–27 July 2018, and it provided a unified communication platform for researchers from all over the world. The main goal of this Special Issue titled “Selected papers from IEEE ICKII 2018” is to discover new scientific knowledge relevant to the topic of electronics and their applications.
n/a --- bandpass filter --- total harmonic distortion (THD) --- long short term memory (LSTM) --- integrated passive device --- intertwined spiral inductor --- global navigation satellite system (GNSS) --- hardware in the loop (HIL) --- interdigital capacitor --- inertial navigation system (INS) --- finite-time convergence control (FTCC) --- digital speckle correlation measurement method --- discrete grey prediction model (DGPM) --- interior permanent magnet synchronous motor --- fuzzy logic --- full pixel search algorithm --- maximum torque per voltage (MTPV) --- spiral capacitor --- gated recurrent unit (GRU) --- chattering --- microelectronics system (MEMS) --- field weakening --- maximum torque per ampere (MTPA) --- hardware implementation --- AC power supply
Choose an application
In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.
soft-switching --- Superjunction MOSFET --- LLC resonant converter --- zero voltage switching --- COSS hysteresis --- COSS intrinsic energy losses --- SiC devices --- antiparallel diode --- dual active bridge --- power electronic transformer --- high-frequency transformer --- Artificial Neural Networks (ANN) --- fault diagnosis --- Fast Fourier Transform (FFT) --- Multilevel Inverter (MLI) --- LabVIEW --- magnetics modeling --- variable inductor --- hysteresis --- eddy currents --- saturable core --- AC/AC conversion --- decoupling control --- modulation --- DC–DC converter --- phase shift PWM --- ZVS --- inrush current --- MOSFET --- telecom server --- modular multilevel converter (MMC) --- total harmonic distortion (THD) --- universal mathematical model (UMM) --- switching state --- nearest level modulation (NLM) --- DC-DC converter --- IGBT --- averaged model --- electrothermal model --- SPICE --- power electronics --- converter control --- power factor correction --- total harmonic distortion --- flyback --- solid-state lighting
Choose an application
In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.
Technology: general issues --- soft-switching --- Superjunction MOSFET --- LLC resonant converter --- zero voltage switching --- COSS hysteresis --- COSS intrinsic energy losses --- SiC devices --- antiparallel diode --- dual active bridge --- power electronic transformer --- high-frequency transformer --- Artificial Neural Networks (ANN) --- fault diagnosis --- Fast Fourier Transform (FFT) --- Multilevel Inverter (MLI) --- LabVIEW --- magnetics modeling --- variable inductor --- hysteresis --- eddy currents --- saturable core --- AC/AC conversion --- decoupling control --- modulation --- DC–DC converter --- phase shift PWM --- ZVS --- inrush current --- MOSFET --- telecom server --- modular multilevel converter (MMC) --- total harmonic distortion (THD) --- universal mathematical model (UMM) --- switching state --- nearest level modulation (NLM) --- DC-DC converter --- IGBT --- averaged model --- electrothermal model --- SPICE --- power electronics --- converter control --- power factor correction --- total harmonic distortion --- flyback --- solid-state lighting --- soft-switching --- Superjunction MOSFET --- LLC resonant converter --- zero voltage switching --- COSS hysteresis --- COSS intrinsic energy losses --- SiC devices --- antiparallel diode --- dual active bridge --- power electronic transformer --- high-frequency transformer --- Artificial Neural Networks (ANN) --- fault diagnosis --- Fast Fourier Transform (FFT) --- Multilevel Inverter (MLI) --- LabVIEW --- magnetics modeling --- variable inductor --- hysteresis --- eddy currents --- saturable core --- AC/AC conversion --- decoupling control --- modulation --- DC–DC converter --- phase shift PWM --- ZVS --- inrush current --- MOSFET --- telecom server --- modular multilevel converter (MMC) --- total harmonic distortion (THD) --- universal mathematical model (UMM) --- switching state --- nearest level modulation (NLM) --- DC-DC converter --- IGBT --- averaged model --- electrothermal model --- SPICE --- power electronics --- converter control --- power factor correction --- total harmonic distortion --- flyback --- solid-state lighting
Choose an application
In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields.
Technology: general issues --- soft-switching --- Superjunction MOSFET --- LLC resonant converter --- zero voltage switching --- COSS hysteresis --- COSS intrinsic energy losses --- SiC devices --- antiparallel diode --- dual active bridge --- power electronic transformer --- high-frequency transformer --- Artificial Neural Networks (ANN) --- fault diagnosis --- Fast Fourier Transform (FFT) --- Multilevel Inverter (MLI) --- LabVIEW --- magnetics modeling --- variable inductor --- hysteresis --- eddy currents --- saturable core --- AC/AC conversion --- decoupling control --- modulation --- DC–DC converter --- phase shift PWM --- ZVS --- inrush current --- MOSFET --- telecom server --- modular multilevel converter (MMC) --- total harmonic distortion (THD) --- universal mathematical model (UMM) --- switching state --- nearest level modulation (NLM) --- DC-DC converter --- IGBT --- averaged model --- electrothermal model --- SPICE --- power electronics --- converter control --- power factor correction --- total harmonic distortion --- flyback --- solid-state lighting
Choose an application
Power quality (PQ) is receiving more and more attention from consumers, distribution system operators, transmission system operators, and other entities related to electrical power systems. As PQ problems have direct implications for business productivity, causing high economic losses, the research and development monitoring technologies and power electronics solutions that ensure the PQ of the power systems are matters of utmost importance. This book is a collection of high quality papers published in the “Power Electronics and Power Quality” Special Issue of the journal Energies. It reflects on the latest investigations and the new trends in this field.
p-q theory --- Pulse Width Modulation (PWM) --- power system protection --- modeling --- comtrade --- space vector modulation (SVM) --- propulsion inverter control system position estimator --- frequency adaption --- wavelet transform --- Simulink --- SGDFT --- indirect matrix converter (IMC) --- hysteresis current control --- switching transients --- input power factor --- high speed maglev --- harmonics --- optimization --- robust control --- protection relay --- variation in voltage --- FBMMC --- MMC --- microinverter --- digital control --- state-space model --- four-leg inverter --- phase-leading capacitor --- histogram --- pulse width modulation --- energy shaping passivity (ESP)-based control --- time multiplier setting (TMS) --- reactive power --- continuous particle swarm optimization (CPSO) --- power control --- microgrid (MG) --- passive method --- Matlab --- voltage control --- switching frequency --- Field Programmable Gate Array (FPGA) --- Omicron CMC 256plus --- distance protection --- low voltage direct-current residential microgrid --- Full-bridge --- series active filter --- static var compensator --- photovoltaic systems --- Total Harmonic Distortion (THD) --- long-stator synchronous motor --- SC --- constant power load --- CSC --- superconducting magnetic energy storage (SMES) --- hybrid power filter --- renewable power generation --- Lagrange-interpolation method --- multilevel converter --- multi-grounded neutral (MGN) system --- temperature --- computer simulation --- thyristor-controlled reactor --- hybrid static var compensator --- static synchronous compensator --- power semiconductor device --- DC short-circuit handling --- cost-effectiveness --- current control --- half-bridge inverters --- Hybrid HVDC --- power inverter --- input filter --- machine learning --- enerlyzer --- matrix converter (MC) --- DC-DC converter --- Shunt Active Power Filter --- neutral integrity detection --- overcurrent relay coordination (OCR) --- power quality --- event detection --- voltage source inverter --- Multiterminal HVDC --- distorted grid conditions --- hybrid active filter --- primary neutral integrity
Choose an application
In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc.
Technology: general issues --- vehicle-grid coupling system --- low frequency oscillation --- traction line-side converter (LSC) --- model-based predictive current control (MBPCC) --- dSPACE semi-physical verification --- switching converters --- sliding-mode control --- current-mode control --- hysteresis control --- PV-connected inverter --- MPPT --- SPPT --- adaptive hysteresis current control --- hybrid storage systems --- power electronic converters --- half-bridge current-source converters --- supercapacitors --- cascaded H-bridge (CHB) --- dc-link voltage balance control --- multilevel converter --- power control --- single-phase system --- pulsating output current --- light emitting diode (LED) --- peak to average ratio (PTAR) --- power factor correction --- harmonic injection --- modelling --- feedback loop control --- three-port converter --- linear active disturbance rejection control --- virtual damping --- linear extended state observer --- power converters --- digital control --- design space --- frequency domain --- switched affine systems --- hybrid systems --- fuzzy identification --- fuzzy modeling --- two degrees of freedom --- fuzzy model predictive control --- PLC --- bus converter --- DC bus --- LED driver --- buck converter --- inversion formulae --- phase margin --- gain crossover frequency --- wireless power transfer --- inductive power transfer --- Pareto optimality --- coil design --- magnetics design --- GaN-based inverter and converter --- zeta inverter --- active clamp --- synchronous rectification --- power efficiency --- circulating current --- fuzzy --- proportional integral --- proportional resonant --- MMC --- DC–DC converter --- experimental verification --- Inductor–Diode --- Inductor–Capacitor–Diode --- nonisolated --- step-down --- two-stage buck converter --- voltage regulation --- power electronic converter --- AC/AC converter --- matrix converter --- reliability --- DPWM --- photovoltaic power system --- differential flatness --- nonlinear control --- networked power converters --- PFC converters --- reactive power resources --- supervisory controller --- HIL Testbed --- binary particle swarm optimization (BPSO) --- nonsingular terminal sliding mode control (NTSMC) --- global best solution --- total harmonic distortion (THD) --- DC–AC converter --- decoupling --- reduced order generalized integrator (ROGI) --- optimal gain --- distributed power generation system (DPGS) --- grid-connected voltage source converters (GC-VSCs) --- vehicle-grid coupling system --- low frequency oscillation --- traction line-side converter (LSC) --- model-based predictive current control (MBPCC) --- dSPACE semi-physical verification --- switching converters --- sliding-mode control --- current-mode control --- hysteresis control --- PV-connected inverter --- MPPT --- SPPT --- adaptive hysteresis current control --- hybrid storage systems --- power electronic converters --- half-bridge current-source converters --- supercapacitors --- cascaded H-bridge (CHB) --- dc-link voltage balance control --- multilevel converter --- power control --- single-phase system --- pulsating output current --- light emitting diode (LED) --- peak to average ratio (PTAR) --- power factor correction --- harmonic injection --- modelling --- feedback loop control --- three-port converter --- linear active disturbance rejection control --- virtual damping --- linear extended state observer --- power converters --- digital control --- design space --- frequency domain --- switched affine systems --- hybrid systems --- fuzzy identification --- fuzzy modeling --- two degrees of freedom --- fuzzy model predictive control --- PLC --- bus converter --- DC bus --- LED driver --- buck converter --- inversion formulae --- phase margin --- gain crossover frequency --- wireless power transfer --- inductive power transfer --- Pareto optimality --- coil design --- magnetics design --- GaN-based inverter and converter --- zeta inverter --- active clamp --- synchronous rectification --- power efficiency --- circulating current --- fuzzy --- proportional integral --- proportional resonant --- MMC --- DC–DC converter --- experimental verification --- Inductor–Diode --- Inductor–Capacitor–Diode --- nonisolated --- step-down --- two-stage buck converter --- voltage regulation --- power electronic converter --- AC/AC converter --- matrix converter --- reliability --- DPWM --- photovoltaic power system --- differential flatness --- nonlinear control --- networked power converters --- PFC converters --- reactive power resources --- supervisory controller --- HIL Testbed --- binary particle swarm optimization (BPSO) --- nonsingular terminal sliding mode control (NTSMC) --- global best solution --- total harmonic distortion (THD) --- DC–AC converter --- decoupling --- reduced order generalized integrator (ROGI) --- optimal gain --- distributed power generation system (DPGS) --- grid-connected voltage source converters (GC-VSCs)
Choose an application
In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc.
Technology: general issues --- vehicle-grid coupling system --- low frequency oscillation --- traction line-side converter (LSC) --- model-based predictive current control (MBPCC) --- dSPACE semi-physical verification --- switching converters --- sliding-mode control --- current-mode control --- hysteresis control --- PV-connected inverter --- MPPT --- SPPT --- adaptive hysteresis current control --- hybrid storage systems --- power electronic converters --- half-bridge current-source converters --- supercapacitors --- cascaded H-bridge (CHB) --- dc-link voltage balance control --- multilevel converter --- power control --- single-phase system --- pulsating output current --- light emitting diode (LED) --- peak to average ratio (PTAR) --- power factor correction --- harmonic injection --- modelling --- feedback loop control --- three-port converter --- linear active disturbance rejection control --- virtual damping --- linear extended state observer --- power converters --- digital control --- design space --- frequency domain --- switched affine systems --- hybrid systems --- fuzzy identification --- fuzzy modeling --- two degrees of freedom --- fuzzy model predictive control --- PLC --- bus converter --- DC bus --- LED driver --- buck converter --- inversion formulae --- phase margin --- gain crossover frequency --- wireless power transfer --- inductive power transfer --- Pareto optimality --- coil design --- magnetics design --- GaN-based inverter and converter --- zeta inverter --- active clamp --- synchronous rectification --- power efficiency --- circulating current --- fuzzy --- proportional integral --- proportional resonant --- MMC --- DC–DC converter --- experimental verification --- Inductor–Diode --- Inductor–Capacitor–Diode --- nonisolated --- step-down --- two-stage buck converter --- voltage regulation --- power electronic converter --- AC/AC converter --- matrix converter --- reliability --- DPWM --- photovoltaic power system --- differential flatness --- nonlinear control --- networked power converters --- PFC converters --- reactive power resources --- supervisory controller --- HIL Testbed --- binary particle swarm optimization (BPSO) --- nonsingular terminal sliding mode control (NTSMC) --- global best solution --- total harmonic distortion (THD) --- DC–AC converter --- decoupling --- reduced order generalized integrator (ROGI) --- optimal gain --- distributed power generation system (DPGS) --- grid-connected voltage source converters (GC-VSCs)
Listing 1 - 10 of 14 | << page >> |
Sort by
|