Listing 1 - 10 of 39 | << page >> |
Sort by
|
Choose an application
Choose an application
This text presents topos theory as it has developed from the study of sheaves. Sheaves arose in geometry as coefficients for cohomology and as descriptions of the functions appropriate to various kinds of manifolds (algebraic, analytic, etc.). Sheaves also appear in logic as carriers for models of set theory as well as for the semantics of other types of logic. Grothendieck introduced a topos as a category of sheaves for algebraic geometry. Subsequently, Lawvere and Tierney obtained elementary axioms for such (more general) categories.This introduction to topos theory begins with a number of illustrative examples that explain the origin of these ideas and then describes the sheafification process and the properties of an elementary topos. The applications to axiomatic set theory and the use in forcing (the Independence of the Continuum Hypothesis and of the Axiom of Choice) are then described. Geometric morphisms- like continuous maps of spaces and the construction of classifying topoi, for example those related to local rings and simplicial sets, next appear, followed by the use of locales (pointless spaces) and the construction of topoi related to geometric languages and logic. This is the first text to address all of these varied aspects of topos theory at the graduate student level.
Toposes. --- Toposes --- Algebraic topology
Choose an application
The aim of this book is to present a theory and a number of techniques which allow to give substance to Grothendieck's vision of the notion of topos. This has been accomplished by building on the notion of classifying topos educed by categorical logicians. Mathematical theories (formalized within first-order logic) give rise to geometric objects called sites; the passage from sites to their associated toposes embodies the passage from the logical presentation of theories to their mathematical content, i.e. from syntax to semantics. The essential ambiguity given by the fact that any topos is associated in general with an infinite number of theories or different sites allows to study the relations between different theories, and hence the theories themselves, by using toposes as 'bridges' between these different presentations. The expression or calculation of invariants of toposes in terms of the theories associated with them or their sites of definition generates a great number of results and notions varying according to the different types of presentation, giving rise to a veritable mathematical morphogenesis.
Choose an application
Choose an application
The first of its kind, this book presents a widely accessible exposition of topos theory, aimed at the philosopher-logician as well as the mathematician. It is suitable for individual study or use in class at the graduate level (it includes 500 exercises). It begins with a fully motivated introduction to category theory itself, moving always from the particular example to the abstract concept. It then introduces the notion of elementary topos, with a wide range of examples and goes on to develop its theory in depth, and to elicit in detail its relationship to Kripke's intuitionistic semantics,
Mathematical logic --- Toposes. --- Topoi (Mathematics) --- Categories (Mathematics) --- Toposes
Choose an application
Mathematical logic --- Category theory. Homological algebra --- Toposes --- Toposes.
Choose an application
Choose an application
Mathematical logic --- Ordered algebraic structures --- Toposes.
Choose an application
Topos theory has led to unexpected connections between classical and constructive mathematics. This text explores Lawvere and Tierney's concept of topos theory, a development in category theory that unites important but seemingly diverse notions from algebraic geometry, set theory, and intuitionistic logic. A virtually self-contained introduction, this volume presents toposes as the models of theories — known as local set theories — formulated within a typed intuitionistic logic. The introductory chapter explores elements of category theory, including limits and colimits, functors, adjunctions, Cartesian closed categories, and Galois connections. Succeeding chapters examine the concept of topos, local set theories, fundamental properties of toposes, sheaves, locale-valued sets, and natural and real numbers in local set theories. An epilogue surveys the wider significance of topos theory, and the text concludes with helpful supplements, including an appendix, historical and bibliographical notes, references, and indexes.
Choose an application
Listing 1 - 10 of 39 | << page >> |
Sort by
|