Listing 1 - 9 of 9 |
Sort by
|
Choose an application
This Special Issue “Characterization of Nanomaterials” collects nine selected papers presented at the 6th Dresden Nanoanalysis Symposium, held at Fraunhofer Institute for Ceramic Technologies and Systems in Dresden, Germany, on 31 August 2018. Following the specific motto of this annual symposium “Materials challenges—Micro- and nanoscale characterization”, it covered various topics of nanoscale materials characterization along the whole value and innovation chain, from fundamental research up to industrial applications. The scope of this Special Issue is to provide an overview of the current status, recent developments and research activities in the field of nanoscale materials characterization, with a particular emphasis on future scenarios. Primarily, analytical techniques for the characterization of thin films and nanostructures are discussed, including modeling and simulation. We anticipate that this Special Issue will be accessible to a wide audience, as it explores not only methodical aspects of nanoscale materials characterization, but also materials synthesis, fabrication of devices and applications.
Technology: general issues --- physical vapor deposition --- magnetron sputtering --- AlN/Al coating --- silicon substrate --- residual stresses --- wafer curvature method --- nanoscale residual stress profiling --- indentation failure modes --- nanoindentation adhesion --- intermetallic phases --- growth kinetics --- Al–Ni system --- zinc oxide --- nanoparticles --- paper transistors --- printed electronics --- electrolyte-gated transistors --- microwave synthesis --- oxide dissociation --- doping --- rare earth ions --- upconversion --- liquid alloys --- 2D materials --- thin films --- Ga–Sn–Zn alloys --- gallium alloys --- nanoanalysis --- lithium-ion --- nickel–manganese–cobalt oxide (NMC) --- leaching --- recycling --- recover --- degradation --- SEM-EDX --- Raman spectroscopy --- resistive switching memories --- multi-level cell --- copper oxide --- grain boundaries --- aluminum oxide --- p-type TFT --- p-type oxide semiconductors --- SnO electrical properties --- oxide structure analysis --- ToF-SIMS 3D imaging --- compositional depth profiling --- high aspect ratio (HAR) structures --- silicon doped hafnium oxide (HSO) ALD deposition --- lateral high aspect ratio (LHAR) --- ToF-SIMS analysis --- n/a --- Al-Ni system --- Ga-Sn-Zn alloys --- nickel-manganese-cobalt oxide (NMC)
Choose an application
This Special Issue “Characterization of Nanomaterials” collects nine selected papers presented at the 6th Dresden Nanoanalysis Symposium, held at Fraunhofer Institute for Ceramic Technologies and Systems in Dresden, Germany, on 31 August 2018. Following the specific motto of this annual symposium “Materials challenges—Micro- and nanoscale characterization”, it covered various topics of nanoscale materials characterization along the whole value and innovation chain, from fundamental research up to industrial applications. The scope of this Special Issue is to provide an overview of the current status, recent developments and research activities in the field of nanoscale materials characterization, with a particular emphasis on future scenarios. Primarily, analytical techniques for the characterization of thin films and nanostructures are discussed, including modeling and simulation. We anticipate that this Special Issue will be accessible to a wide audience, as it explores not only methodical aspects of nanoscale materials characterization, but also materials synthesis, fabrication of devices and applications.
physical vapor deposition --- magnetron sputtering --- AlN/Al coating --- silicon substrate --- residual stresses --- wafer curvature method --- nanoscale residual stress profiling --- indentation failure modes --- nanoindentation adhesion --- intermetallic phases --- growth kinetics --- Al–Ni system --- zinc oxide --- nanoparticles --- paper transistors --- printed electronics --- electrolyte-gated transistors --- microwave synthesis --- oxide dissociation --- doping --- rare earth ions --- upconversion --- liquid alloys --- 2D materials --- thin films --- Ga–Sn–Zn alloys --- gallium alloys --- nanoanalysis --- lithium-ion --- nickel–manganese–cobalt oxide (NMC) --- leaching --- recycling --- recover --- degradation --- SEM-EDX --- Raman spectroscopy --- resistive switching memories --- multi-level cell --- copper oxide --- grain boundaries --- aluminum oxide --- p-type TFT --- p-type oxide semiconductors --- SnO electrical properties --- oxide structure analysis --- ToF-SIMS 3D imaging --- compositional depth profiling --- high aspect ratio (HAR) structures --- silicon doped hafnium oxide (HSO) ALD deposition --- lateral high aspect ratio (LHAR) --- ToF-SIMS analysis --- n/a --- Al-Ni system --- Ga-Sn-Zn alloys --- nickel-manganese-cobalt oxide (NMC)
Choose an application
This Special Issue “Characterization of Nanomaterials” collects nine selected papers presented at the 6th Dresden Nanoanalysis Symposium, held at Fraunhofer Institute for Ceramic Technologies and Systems in Dresden, Germany, on 31 August 2018. Following the specific motto of this annual symposium “Materials challenges—Micro- and nanoscale characterization”, it covered various topics of nanoscale materials characterization along the whole value and innovation chain, from fundamental research up to industrial applications. The scope of this Special Issue is to provide an overview of the current status, recent developments and research activities in the field of nanoscale materials characterization, with a particular emphasis on future scenarios. Primarily, analytical techniques for the characterization of thin films and nanostructures are discussed, including modeling and simulation. We anticipate that this Special Issue will be accessible to a wide audience, as it explores not only methodical aspects of nanoscale materials characterization, but also materials synthesis, fabrication of devices and applications.
Technology: general issues --- physical vapor deposition --- magnetron sputtering --- AlN/Al coating --- silicon substrate --- residual stresses --- wafer curvature method --- nanoscale residual stress profiling --- indentation failure modes --- nanoindentation adhesion --- intermetallic phases --- growth kinetics --- Al-Ni system --- zinc oxide --- nanoparticles --- paper transistors --- printed electronics --- electrolyte-gated transistors --- microwave synthesis --- oxide dissociation --- doping --- rare earth ions --- upconversion --- liquid alloys --- 2D materials --- thin films --- Ga-Sn-Zn alloys --- gallium alloys --- nanoanalysis --- lithium-ion --- nickel-manganese-cobalt oxide (NMC) --- leaching --- recycling --- recover --- degradation --- SEM-EDX --- Raman spectroscopy --- resistive switching memories --- multi-level cell --- copper oxide --- grain boundaries --- aluminum oxide --- p-type TFT --- p-type oxide semiconductors --- SnO electrical properties --- oxide structure analysis --- ToF-SIMS 3D imaging --- compositional depth profiling --- high aspect ratio (HAR) structures --- silicon doped hafnium oxide (HSO) ALD deposition --- lateral high aspect ratio (LHAR) --- ToF-SIMS analysis
Choose an application
Biomass can be used as feedstock for the production of biomaterials, chemicals, platform molecules and biofuels. It is the most reliable alternative to reduce fossil fuel consumption and greenhouse gas emissions. Within the framework of the circular economy, resource recovery from organic waste, including sewage sludge, biowaste, manure and slaughterhouse waste, is particularly useful, as it helps saving resources while reducing environmental pollution. In contrast to energy crops, lignocellulosic biomass and algae do not compete for food production; therefore, they represent an important source of biomass for bioenergy and bioproducts. However, biomass may require a pretreatment step in order to enhance its conversion into valuable products in terms of process yield and/or productivity. Furthermore, a pretreatment step may be mandatory for waste management (i.e., animal by-products).Pretreatment technologies are applied upstream of various conversion processes of biomass into biofuels or biomaterials, including bioethanol, biohydrogen, biomethane, biomolecules or bioproducts. Pretreatments may include mechanical, thermal, chemical and biological techniques, which represent a crucial, cost-intensive step for the development of biorefineries. Thus, research is needed to help identify the most effective, economic, and environmentally friendly pretreatment options for each feedstock. This Special Issue aims to gather recent developments of biomass pretreatments for bioproduct and biofuel production.
biomass --- valorisation --- ionic liquid --- crystallinity --- enzymatic hydrolysis --- pre-treatment --- acidogenic fermentation --- hydrothermal treatment --- source separated organics --- volatile fatty acids --- particulate organics solubilization --- microbial community analysis --- Pennisetum alopecuroides --- dilute alkaline pretreatment --- ferric chloride pretreatment --- bioethanol --- biomethane --- citrus peel waste --- biorefinery --- biorefinery residues --- ADM1 --- anaerobic digestion --- aqueous ammonia soaking pre-treatment --- continuous --- digested manure fibers --- modelling --- acetic acid --- butyric acid --- HRT --- pH --- propionic acid --- steam treatment --- pretreatment --- lignocellulose --- biochemical methane potential --- lithium --- sugarcane bagasse --- saccharification --- glycosyl-hydrolase --- ToF-SIMS --- surface ion distribution --- second-generation ethanol --- microwave pretreatment --- grass biomass --- p-hydroxycinnamic acids extraction --- lignocellulosic biomass --- NaOH pretreatment --- bioreactor experiments --- inhibition --- grass lawn waste --- whole slurry --- separated fractions --- alkali --- acid --- energy balance --- economical assessment --- municipal sludge --- thermal pretreatment --- microwave --- contaminants of emerging concern --- personal care products --- antimicrobial disinfectants --- triclosan --- ultra-high performance liquid chromatography --- tandem mass spectrometry --- biogas production --- fruit and vegetable harvesting wastes --- process optimization --- thermo chemical pretreatment --- biogas yield --- waste activated sludge --- electro-Fenton --- disintegration --- dewaterability --- mechanical pretreatments --- agricultural wastes --- rheology --- physical properties
Choose an application
Biomass can be used as feedstock for the production of biomaterials, chemicals, platform molecules and biofuels. It is the most reliable alternative to reduce fossil fuel consumption and greenhouse gas emissions. Within the framework of the circular economy, resource recovery from organic waste, including sewage sludge, biowaste, manure and slaughterhouse waste, is particularly useful, as it helps saving resources while reducing environmental pollution. In contrast to energy crops, lignocellulosic biomass and algae do not compete for food production; therefore, they represent an important source of biomass for bioenergy and bioproducts. However, biomass may require a pretreatment step in order to enhance its conversion into valuable products in terms of process yield and/or productivity. Furthermore, a pretreatment step may be mandatory for waste management (i.e., animal by-products).Pretreatment technologies are applied upstream of various conversion processes of biomass into biofuels or biomaterials, including bioethanol, biohydrogen, biomethane, biomolecules or bioproducts. Pretreatments may include mechanical, thermal, chemical and biological techniques, which represent a crucial, cost-intensive step for the development of biorefineries. Thus, research is needed to help identify the most effective, economic, and environmentally friendly pretreatment options for each feedstock. This Special Issue aims to gather recent developments of biomass pretreatments for bioproduct and biofuel production.
Technology: general issues --- biomass --- valorisation --- ionic liquid --- crystallinity --- enzymatic hydrolysis --- pre-treatment --- acidogenic fermentation --- hydrothermal treatment --- source separated organics --- volatile fatty acids --- particulate organics solubilization --- microbial community analysis --- Pennisetum alopecuroides --- dilute alkaline pretreatment --- ferric chloride pretreatment --- bioethanol --- biomethane --- citrus peel waste --- biorefinery --- biorefinery residues --- ADM1 --- anaerobic digestion --- aqueous ammonia soaking pre-treatment --- continuous --- digested manure fibers --- modelling --- acetic acid --- butyric acid --- HRT --- pH --- propionic acid --- steam treatment --- pretreatment --- lignocellulose --- biochemical methane potential --- lithium --- sugarcane bagasse --- saccharification --- glycosyl-hydrolase --- ToF-SIMS --- surface ion distribution --- second-generation ethanol --- microwave pretreatment --- grass biomass --- p-hydroxycinnamic acids extraction --- lignocellulosic biomass --- NaOH pretreatment --- bioreactor experiments --- inhibition --- grass lawn waste --- whole slurry --- separated fractions --- alkali --- acid --- energy balance --- economical assessment --- municipal sludge --- thermal pretreatment --- microwave --- contaminants of emerging concern --- personal care products --- antimicrobial disinfectants --- triclosan --- ultra-high performance liquid chromatography --- tandem mass spectrometry --- biogas production --- fruit and vegetable harvesting wastes --- process optimization --- thermo chemical pretreatment --- biogas yield --- waste activated sludge --- electro-Fenton --- disintegration --- dewaterability --- mechanical pretreatments --- agricultural wastes --- rheology --- physical properties
Choose an application
This Special Issue "Application of Wood Composites" addresses various aspects of these important wood materials’ use. Topics include the mechanical processing of wood composites, including their cutting, milling, or sanding, incorporating current analysis of wood dust or grain size measurements and the composition of particles; scientific views on the influence of various adhesives in the creation process of wood composites and the analysis of their behavior in contact with various wood elements under different conditions; the analysis of input raw materials forming wood composites, including various wood species, but also non-wood lignocellulosic raw materials; and, last but not least, the analysis of bark, which in recent years has become an important and promising raw material involved in the construction of wood composites. The study of the development of the sliding table saw also suitably complements this Special Issue.
Technology: general issues --- bark --- bonding --- partial liquefaction --- MUF adhesives --- water vapor sorption --- thickness swelling --- wood-based panels --- chestnut --- decay --- defect --- density --- knot --- roughness --- surface --- texture --- quality --- veneer --- hazelnut --- walnut --- shells --- lignocellulosic composites --- UF --- PUR --- formaldehyde content --- oriented strand boards (OSBs) --- fast-growing species, modulus of rupture (MOR) --- modulus of elasticity (MOE) --- internal bond (IB) --- swelling (S) --- water absorption (A) --- biobased resins --- formaldehyde emission --- minerals --- wollastonite --- wood composite panels --- sliding table saw --- spindle --- critical rotational speed --- static stiffness --- dynamic properties --- noise --- sawing of wood composites --- wood composites --- recycled fibres --- bioadhesives --- magnesium lignosulfonate --- corner joints --- bending strength capacity --- birch wood --- chips --- granulometric composition of sawdust and chips --- air handling --- ecological filtration --- tropical wood dust --- granulometric sieve analysis --- morphology shape of particles --- temperature of ignition --- laser cutting --- wood --- cutting parameters --- wood dust --- sanding --- sandpaper --- particle-size distribution --- acetylation --- wood fiber --- strength --- stiffness --- internal bonding strength --- regression --- finite element analysis --- alien plants --- wood plastic composite --- flexural strength --- tensile strength --- swelling --- dimension stability --- scanning electron microscopy --- hardwoods --- extractives --- pH value --- wettability --- PVAc adhesive --- adhesion strength --- particleboard --- three-layer particleboard --- cup plant --- TOF-SIMS --- biomass --- bioresources --- softwood --- hardwood --- belt sander --- abrasion --- beech --- oak --- ash --- hornbeam --- alder --- pine --- spruce --- larch --- n/a
Choose an application
This Special Issue "Application of Wood Composites" addresses various aspects of these important wood materials’ use. Topics include the mechanical processing of wood composites, including their cutting, milling, or sanding, incorporating current analysis of wood dust or grain size measurements and the composition of particles; scientific views on the influence of various adhesives in the creation process of wood composites and the analysis of their behavior in contact with various wood elements under different conditions; the analysis of input raw materials forming wood composites, including various wood species, but also non-wood lignocellulosic raw materials; and, last but not least, the analysis of bark, which in recent years has become an important and promising raw material involved in the construction of wood composites. The study of the development of the sliding table saw also suitably complements this Special Issue.
bark --- bonding --- partial liquefaction --- MUF adhesives --- water vapor sorption --- thickness swelling --- wood-based panels --- chestnut --- decay --- defect --- density --- knot --- roughness --- surface --- texture --- quality --- veneer --- hazelnut --- walnut --- shells --- lignocellulosic composites --- UF --- PUR --- formaldehyde content --- oriented strand boards (OSBs) --- fast-growing species, modulus of rupture (MOR) --- modulus of elasticity (MOE) --- internal bond (IB) --- swelling (S) --- water absorption (A) --- biobased resins --- formaldehyde emission --- minerals --- wollastonite --- wood composite panels --- sliding table saw --- spindle --- critical rotational speed --- static stiffness --- dynamic properties --- noise --- sawing of wood composites --- wood composites --- recycled fibres --- bioadhesives --- magnesium lignosulfonate --- corner joints --- bending strength capacity --- birch wood --- chips --- granulometric composition of sawdust and chips --- air handling --- ecological filtration --- tropical wood dust --- granulometric sieve analysis --- morphology shape of particles --- temperature of ignition --- laser cutting --- wood --- cutting parameters --- wood dust --- sanding --- sandpaper --- particle-size distribution --- acetylation --- wood fiber --- strength --- stiffness --- internal bonding strength --- regression --- finite element analysis --- alien plants --- wood plastic composite --- flexural strength --- tensile strength --- swelling --- dimension stability --- scanning electron microscopy --- hardwoods --- extractives --- pH value --- wettability --- PVAc adhesive --- adhesion strength --- particleboard --- three-layer particleboard --- cup plant --- TOF-SIMS --- biomass --- bioresources --- softwood --- hardwood --- belt sander --- abrasion --- beech --- oak --- ash --- hornbeam --- alder --- pine --- spruce --- larch --- n/a
Choose an application
Biomass can be used as feedstock for the production of biomaterials, chemicals, platform molecules and biofuels. It is the most reliable alternative to reduce fossil fuel consumption and greenhouse gas emissions. Within the framework of the circular economy, resource recovery from organic waste, including sewage sludge, biowaste, manure and slaughterhouse waste, is particularly useful, as it helps saving resources while reducing environmental pollution. In contrast to energy crops, lignocellulosic biomass and algae do not compete for food production; therefore, they represent an important source of biomass for bioenergy and bioproducts. However, biomass may require a pretreatment step in order to enhance its conversion into valuable products in terms of process yield and/or productivity. Furthermore, a pretreatment step may be mandatory for waste management (i.e., animal by-products).Pretreatment technologies are applied upstream of various conversion processes of biomass into biofuels or biomaterials, including bioethanol, biohydrogen, biomethane, biomolecules or bioproducts. Pretreatments may include mechanical, thermal, chemical and biological techniques, which represent a crucial, cost-intensive step for the development of biorefineries. Thus, research is needed to help identify the most effective, economic, and environmentally friendly pretreatment options for each feedstock. This Special Issue aims to gather recent developments of biomass pretreatments for bioproduct and biofuel production.
Technology: general issues --- biomass --- valorisation --- ionic liquid --- crystallinity --- enzymatic hydrolysis --- pre-treatment --- acidogenic fermentation --- hydrothermal treatment --- source separated organics --- volatile fatty acids --- particulate organics solubilization --- microbial community analysis --- Pennisetum alopecuroides --- dilute alkaline pretreatment --- ferric chloride pretreatment --- bioethanol --- biomethane --- citrus peel waste --- biorefinery --- biorefinery residues --- ADM1 --- anaerobic digestion --- aqueous ammonia soaking pre-treatment --- continuous --- digested manure fibers --- modelling --- acetic acid --- butyric acid --- HRT --- pH --- propionic acid --- steam treatment --- pretreatment --- lignocellulose --- biochemical methane potential --- lithium --- sugarcane bagasse --- saccharification --- glycosyl-hydrolase --- ToF-SIMS --- surface ion distribution --- second-generation ethanol --- microwave pretreatment --- grass biomass --- p-hydroxycinnamic acids extraction --- lignocellulosic biomass --- NaOH pretreatment --- bioreactor experiments --- inhibition --- grass lawn waste --- whole slurry --- separated fractions --- alkali --- acid --- energy balance --- economical assessment --- municipal sludge --- thermal pretreatment --- microwave --- contaminants of emerging concern --- personal care products --- antimicrobial disinfectants --- triclosan --- ultra-high performance liquid chromatography --- tandem mass spectrometry --- biogas production --- fruit and vegetable harvesting wastes --- process optimization --- thermo chemical pretreatment --- biogas yield --- waste activated sludge --- electro-Fenton --- disintegration --- dewaterability --- mechanical pretreatments --- agricultural wastes --- rheology --- physical properties
Choose an application
This Special Issue "Application of Wood Composites" addresses various aspects of these important wood materials’ use. Topics include the mechanical processing of wood composites, including their cutting, milling, or sanding, incorporating current analysis of wood dust or grain size measurements and the composition of particles; scientific views on the influence of various adhesives in the creation process of wood composites and the analysis of their behavior in contact with various wood elements under different conditions; the analysis of input raw materials forming wood composites, including various wood species, but also non-wood lignocellulosic raw materials; and, last but not least, the analysis of bark, which in recent years has become an important and promising raw material involved in the construction of wood composites. The study of the development of the sliding table saw also suitably complements this Special Issue.
Technology: general issues --- bark --- bonding --- partial liquefaction --- MUF adhesives --- water vapor sorption --- thickness swelling --- wood-based panels --- chestnut --- decay --- defect --- density --- knot --- roughness --- surface --- texture --- quality --- veneer --- hazelnut --- walnut --- shells --- lignocellulosic composites --- UF --- PUR --- formaldehyde content --- oriented strand boards (OSBs) --- fast-growing species, modulus of rupture (MOR) --- modulus of elasticity (MOE) --- internal bond (IB) --- swelling (S) --- water absorption (A) --- biobased resins --- formaldehyde emission --- minerals --- wollastonite --- wood composite panels --- sliding table saw --- spindle --- critical rotational speed --- static stiffness --- dynamic properties --- noise --- sawing of wood composites --- wood composites --- recycled fibres --- bioadhesives --- magnesium lignosulfonate --- corner joints --- bending strength capacity --- birch wood --- chips --- granulometric composition of sawdust and chips --- air handling --- ecological filtration --- tropical wood dust --- granulometric sieve analysis --- morphology shape of particles --- temperature of ignition --- laser cutting --- wood --- cutting parameters --- wood dust --- sanding --- sandpaper --- particle-size distribution --- acetylation --- wood fiber --- strength --- stiffness --- internal bonding strength --- regression --- finite element analysis --- alien plants --- wood plastic composite --- flexural strength --- tensile strength --- swelling --- dimension stability --- scanning electron microscopy --- hardwoods --- extractives --- pH value --- wettability --- PVAc adhesive --- adhesion strength --- particleboard --- three-layer particleboard --- cup plant --- TOF-SIMS --- biomass --- bioresources --- softwood --- hardwood --- belt sander --- abrasion --- beech --- oak --- ash --- hornbeam --- alder --- pine --- spruce --- larch
Listing 1 - 9 of 9 |
Sort by
|