Listing 1 - 10 of 42 | << page >> |
Sort by
|
Choose an application
Three-dimensional printing, or additive manufacturing, is an emerging manufacturing process. Research and development are being performed worldwide to provide a better understanding of the science and technology of 3D printing to make high-quality parts in a cost-effective and time-efficient manner. This book includes contemporary, unique, and impactful research on 3D printing from leading organizations worldwide.
Technology: general issues --- metal additive manufacturing --- directed energy deposition --- alloy design --- elemental powder mixture --- advanced materials --- composition control --- porosity --- additive technology --- SLM --- computer tomography --- additive manufacture --- SLM Ti-6Al-4V --- variability --- anisotropy --- fatigue crack growth --- Ti-6Al-4V alloy --- laser powder bed fusion --- powder bed temperature --- microstructure evolution --- mechanical properties --- additive manufacturing --- pore --- pulsed emission --- X-ray imaging --- non-spherical --- hydride-dehydride (HDH) Ti-6Al-4V powder --- post-process heat treatment --- microstructure --- ductile fracture --- stress state --- Ti-6Al-4V --- 316L stainless steel --- soft materials --- smart materials --- stretchable devices --- FRP --- 3D printing --- defense --- FDM --- topology optimization --- neural network --- neural style transfer --- binder jetting --- sands --- vacuum thermoforming --- fiber reinforced composite --- n/a
Choose an application
Three-dimensional printing, or additive manufacturing, is an emerging manufacturing process. Research and development are being performed worldwide to provide a better understanding of the science and technology of 3D printing to make high-quality parts in a cost-effective and time-efficient manner. This book includes contemporary, unique, and impactful research on 3D printing from leading organizations worldwide.
metal additive manufacturing --- directed energy deposition --- alloy design --- elemental powder mixture --- advanced materials --- composition control --- porosity --- additive technology --- SLM --- computer tomography --- additive manufacture --- SLM Ti-6Al-4V --- variability --- anisotropy --- fatigue crack growth --- Ti-6Al-4V alloy --- laser powder bed fusion --- powder bed temperature --- microstructure evolution --- mechanical properties --- additive manufacturing --- pore --- pulsed emission --- X-ray imaging --- non-spherical --- hydride-dehydride (HDH) Ti-6Al-4V powder --- post-process heat treatment --- microstructure --- ductile fracture --- stress state --- Ti-6Al-4V --- 316L stainless steel --- soft materials --- smart materials --- stretchable devices --- FRP --- 3D printing --- defense --- FDM --- topology optimization --- neural network --- neural style transfer --- binder jetting --- sands --- vacuum thermoforming --- fiber reinforced composite --- n/a
Choose an application
Three-dimensional printing, or additive manufacturing, is an emerging manufacturing process. Research and development are being performed worldwide to provide a better understanding of the science and technology of 3D printing to make high-quality parts in a cost-effective and time-efficient manner. This book includes contemporary, unique, and impactful research on 3D printing from leading organizations worldwide.
Technology: general issues --- metal additive manufacturing --- directed energy deposition --- alloy design --- elemental powder mixture --- advanced materials --- composition control --- porosity --- additive technology --- SLM --- computer tomography --- additive manufacture --- SLM Ti-6Al-4V --- variability --- anisotropy --- fatigue crack growth --- Ti-6Al-4V alloy --- laser powder bed fusion --- powder bed temperature --- microstructure evolution --- mechanical properties --- additive manufacturing --- pore --- pulsed emission --- X-ray imaging --- non-spherical --- hydride-dehydride (HDH) Ti-6Al-4V powder --- post-process heat treatment --- microstructure --- ductile fracture --- stress state --- Ti-6Al-4V --- 316L stainless steel --- soft materials --- smart materials --- stretchable devices --- FRP --- 3D printing --- defense --- FDM --- topology optimization --- neural network --- neural style transfer --- binder jetting --- sands --- vacuum thermoforming --- fiber reinforced composite
Choose an application
Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers, and scientists. AM has the ability to fabricate materials to produce parts with complex shapes without any theoretical restrictions combined with added functionalities. Selective laser melting (SLM), also known as laser-based powder bed processing (LPBF), is one of the main AM process that can be used to fabricate wide variety of materials that are Al-, Ti-, Fe-, Ni-, Co-, W-, Ag-, and Au-based, etc. However, several challenges need to be addressed systematically, such as development of new materials that suit the SLM process conditions so the process capabilities can be fully used to produce new properties in these materials. Other issues in the field are the lack of microstructure–property correlations, premature failure, etc. Accordingly, this Special Issue (book) focuses mainly on the microstructure-correlation in three different alloys: AlSi10Mg, Ti6Al4V, and 304L stainless steel, where six articles are presented. Hence, this Special Issue outlines microstructure–property correlations in the SLM processed materials and provides a value addition to the field of AM.
n/a --- geometrical dimensioning and tolerancing (GD and T) --- Ti–6Al–4V --- microstructure --- compression testing --- analytical melt pool calculation --- stainless steel --- build orientation --- surface roughness --- process variability --- Tukey’s test --- additive manufacturing --- phase change --- AlSi10Mg --- analysis of variance --- SLM --- repeatability and reproducibility --- inter-repeatability --- distortion analysis --- laser powder bed fusion --- porosity --- dimensional quality analysis --- cylindrical symmetry --- metrology --- mechanical properties --- HIP --- fatigue strength --- process capability --- hatch angle --- line heat source --- selective laser melting --- selective laser melting (SLM) --- intra-repeatability --- Ti-6Al-4V --- Tukey's test
Choose an application
Additive Manufacturing (AM), more popularly known as 3D printing, is transforming the industry. AM of metal components with virtually no geometric limitations has enabled new product design options and opportunities, increased product performance, shorter cycle time in part production, total cost reduction, shortened lead time, improved material efficiency, more sustainable products and processes, full circularity in the economy, and new revenue streams. This Special Issue of Metals gives an up-to-date account of the state of the art in AM.
Technology: general issues --- additive manufacturing --- support structures --- electron beam melting --- support structure removability --- biological origin hydroxyapatite --- bioactive layers --- cranial mesh implants --- selective laser melting --- 3D printing --- radio-frequency magnetron sputtering --- powder bed fusion --- single crystal --- grain selection --- cavity resonators --- filters --- microwave --- plating --- stereolithography --- thermal expansion --- three-dimensional printing --- directed energy deposition --- EN AW-7075 --- porosity --- ultimate tensile strength --- wire arc additive manufacturing --- WAAM --- microstructure --- magnesium --- mechanical properties --- scanning electron microscopy --- electron backscattered diffraction method --- direct energy deposition --- cold metal transfer --- 5356-aluminum --- temperature distribution --- metal powder bed fusion --- Ti–6Al–4V --- residual stresses --- heat treatments --- electron beam melting (EBM) --- process window --- stainless steel --- 316LN --- powder methods --- additive manufacturing (AM) --- post-processing --- 316L stainless-steel --- electron microscopy --- rapid tooling --- laser-based powder bed fusion (L-PBF) --- production tools --- cold working --- hot working --- injection molding --- n/a --- Ti-6Al-4V
Choose an application
This special issue provides a current snapshot of recent advances and ongoing challenges in the development of titanium alloys for biomedical implants and devices. Titanium offers significant advantages over other materials including higher strength and better biocompatibility. This issue highlights current trends and recent developments, including the uptake of additive manufacturing (3D printing), and approaches to improve processing and performance of titanium alloys for medical applications.
History of engineering & technology --- selective laser melting --- gradient structure --- porous biomaterial --- Ti6Al4V --- mechanical properties --- osteoblast --- biomechanics --- dental implant(s) --- in vitro --- systematic reviews --- evidence-based medicine --- atrophic maxilla --- titanium hybrid-plates --- finite element analysis --- biomechanical analysis --- single-point incremental forming --- AHP --- cranioplasty plates --- decision-making --- titanium alloys --- medical devices --- machining --- titanium --- temperature --- strain --- grain refinement --- ultrafine --- nanocrystalline --- mechanical characterization --- press-fit --- primary stability --- Ti-6Al-4V --- additive manufacturing --- selective laser melting (SLM) --- electron beam melting (EBM) --- direct metal deposition (DMD) --- wire and arc additive manufacturing (WAAM) --- diffraction line profile analysis --- extended convolution multiple whole profile (eCMWP) --- implanted electrodes --- electrical stimulation --- corrosion --- mandibular reconstruction --- scaffolds --- reconstruction plate --- 3D printing --- titanium alloy --- Titanium alloys --- Ti-6Al-4V-ELI --- fatigue --- laser cutting --- post-processing --- α’-martensite --- HAZ --- barrel grinding --- notch --- fracture
Choose an application
This book is an exciting collection of research articles that offer a unique view into the fast developing field of metal additive manufacturing, providing insights into this advanced manufacturing technology. The articles span recent advances in metal AM technologies, and their application to a wide range of metals, exploring how the processing parameters offer unique material properties. This book encapsulates the state of the art in this rapidly evolving field of technology and will be a valuable resource for researchers in the field, from Ph.D. students to professors, and through to industrial end users.
Technology: general issues --- additive manufacturing --- laser powder bed fusion --- A357.0 --- mechanical performance --- Laser powder bed fusion --- selective laser melting --- SKD61 tool steel --- nanoindentation --- strain-rate sensitivity --- nonhorizontal suspension structure --- boundary remelting --- surface roughness --- forming accuracy --- Ti–6Al–4V alloy --- metallurgical quality --- mechanical properties --- aluminum alloys --- high-temperature deformation --- microstructure --- selective laser melting (SLM) --- Ti alloy --- high temperature tensile --- erosion --- wear --- construction --- WAAM --- welding --- steel --- ESPI --- design --- powder bed fusion (PBF) --- Ti-6Al-4V --- phase transformation --- tensile --- 90W-7Ni-3Fe --- densification --- properties --- hyper-duplex stainless steel --- mechanical property --- corrosion resistance --- Alsi10Mg --- stress relieve --- Inconel 718 --- embrittlement --- titanium --- drilling --- chip geometry --- cutting forces --- hole quality --- DED --- laser --- thermal conductivity --- thermal diffusivity --- thermal modeling --- hot stamping --- AISI H13 --- plasma transferred arc --- processing conditions --- Hastelloy C-22 --- wire and arc additive manufacturing --- low-carbon high-strength steel --- anisotropy
Choose an application
This book is an exciting collection of research articles that offer a unique view into the fast developing field of metal additive manufacturing, providing insights into this advanced manufacturing technology. The articles span recent advances in metal AM technologies, and their application to a wide range of metals, exploring how the processing parameters offer unique material properties. This book encapsulates the state of the art in this rapidly evolving field of technology and will be a valuable resource for researchers in the field, from Ph.D. students to professors, and through to industrial end users.
additive manufacturing --- laser powder bed fusion --- A357.0 --- mechanical performance --- Laser powder bed fusion --- selective laser melting --- SKD61 tool steel --- nanoindentation --- strain-rate sensitivity --- nonhorizontal suspension structure --- boundary remelting --- surface roughness --- forming accuracy --- Ti–6Al–4V alloy --- metallurgical quality --- mechanical properties --- aluminum alloys --- high-temperature deformation --- microstructure --- selective laser melting (SLM) --- Ti alloy --- high temperature tensile --- erosion --- wear --- construction --- WAAM --- welding --- steel --- ESPI --- design --- powder bed fusion (PBF) --- Ti-6Al-4V --- phase transformation --- tensile --- 90W-7Ni-3Fe --- densification --- properties --- hyper-duplex stainless steel --- mechanical property --- corrosion resistance --- Alsi10Mg --- stress relieve --- Inconel 718 --- embrittlement --- titanium --- drilling --- chip geometry --- cutting forces --- hole quality --- DED --- laser --- thermal conductivity --- thermal diffusivity --- thermal modeling --- hot stamping --- AISI H13 --- plasma transferred arc --- processing conditions --- Hastelloy C-22 --- wire and arc additive manufacturing --- low-carbon high-strength steel --- anisotropy
Choose an application
Additive Manufacturing (AM), more popularly known as 3D printing, is transforming the industry. AM of metal components with virtually no geometric limitations has enabled new product design options and opportunities, increased product performance, shorter cycle time in part production, total cost reduction, shortened lead time, improved material efficiency, more sustainable products and processes, full circularity in the economy, and new revenue streams. This Special Issue of Metals gives an up-to-date account of the state of the art in AM.
additive manufacturing --- support structures --- electron beam melting --- support structure removability --- biological origin hydroxyapatite --- bioactive layers --- cranial mesh implants --- selective laser melting --- 3D printing --- radio-frequency magnetron sputtering --- powder bed fusion --- single crystal --- grain selection --- cavity resonators --- filters --- microwave --- plating --- stereolithography --- thermal expansion --- three-dimensional printing --- directed energy deposition --- EN AW-7075 --- porosity --- ultimate tensile strength --- wire arc additive manufacturing --- WAAM --- microstructure --- magnesium --- mechanical properties --- scanning electron microscopy --- electron backscattered diffraction method --- direct energy deposition --- cold metal transfer --- 5356-aluminum --- temperature distribution --- metal powder bed fusion --- Ti–6Al–4V --- residual stresses --- heat treatments --- electron beam melting (EBM) --- process window --- stainless steel --- 316LN --- powder methods --- additive manufacturing (AM) --- post-processing --- 316L stainless-steel --- electron microscopy --- rapid tooling --- laser-based powder bed fusion (L-PBF) --- production tools --- cold working --- hot working --- injection molding --- n/a --- Ti-6Al-4V
Choose an application
This special issue provides a current snapshot of recent advances and ongoing challenges in the development of titanium alloys for biomedical implants and devices. Titanium offers significant advantages over other materials including higher strength and better biocompatibility. This issue highlights current trends and recent developments, including the uptake of additive manufacturing (3D printing), and approaches to improve processing and performance of titanium alloys for medical applications.
selective laser melting --- gradient structure --- porous biomaterial --- Ti6Al4V --- mechanical properties --- osteoblast --- biomechanics --- dental implant(s) --- in vitro --- systematic reviews --- evidence-based medicine --- atrophic maxilla --- titanium hybrid-plates --- finite element analysis --- biomechanical analysis --- single-point incremental forming --- AHP --- cranioplasty plates --- decision-making --- titanium alloys --- medical devices --- machining --- titanium --- temperature --- strain --- grain refinement --- ultrafine --- nanocrystalline --- mechanical characterization --- press-fit --- primary stability --- Ti-6Al-4V --- additive manufacturing --- selective laser melting (SLM) --- electron beam melting (EBM) --- direct metal deposition (DMD) --- wire and arc additive manufacturing (WAAM) --- diffraction line profile analysis --- extended convolution multiple whole profile (eCMWP) --- implanted electrodes --- electrical stimulation --- corrosion --- mandibular reconstruction --- scaffolds --- reconstruction plate --- 3D printing --- titanium alloy --- Titanium alloys --- Ti-6Al-4V-ELI --- fatigue --- laser cutting --- post-processing --- α’-martensite --- HAZ --- barrel grinding --- notch --- fracture
Listing 1 - 10 of 42 | << page >> |
Sort by
|