Narrow your search

Library

ULiège (1)


Resource type

dissertation (1)


Language

English (1)


Year
From To Submit

2020 (1)

Listing 1 - 1 of 1
Sort by

Dissertation
Master thesis and internship[BR]- Master's Thesis : Aeroelastic modelling of the Sonaca 200[BR]- Internship (linked to master's thesis)
Authors: --- --- --- --- --- et al.
Year: 2020 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

The present work concerns flutter analysis of the Sonaca 200, more precisely extension of
the aeroelastic model to the full airplane. It fits in the continuation of two master theses
that studied aeroelastic behavior of the main wing. The studied configuration corresponds
to the prototype state of the airplane in 2018, without fuel nor luggage and with fixed
control surfaces. An analytical approach relying on Megson aircraft structures theory [1]
is here implemented to provide structural models for the rear fuselage and the empennage
that are suited for flutter analysis. The different components are then assembled using
elastic connections to create a full finite element model of the aircraft. Numerical modal
analysis is performed on this latter and the resulting eigenmodes are compared with
experimental data from ground vibration testing for validation. In parallel, an aeroelastic
model of the Sonaca 200 utilizing the vortex lattice theory [2][3] is developed in Matlab
based on the work of Dimitriadis. It manages aerodynamic efforts on the structure with
use of vortex ring elements and relies on modal analysis data to solve the aeroelastic
equation of motion. The algorithm is first tested with experimental modes and provides
a satifactory degree of comparison with reference aeroelastic solutions computed by the
Leichtwerk company. Outputs of the finite element model are subsequently injected in
the program to observe the differences in terms of aeroelastic solutions. The results seem
encouraging but highlight sensitivity of the Vortex Lattice Method to modal parameters
of the system. It would thus be beneficial to investigate ways of improving accuracy of
the finite element model for it to be appropriate in practice. Part of this improvement
may come from determination of the real boundary conditions with the ground. Besides,
implementing movable control surface in the finite element model would allow to test
critical configurations of the airplane where actual flutter might appear.

Listing 1 - 1 of 1
Sort by