Narrow your search

Library

KU Leuven (2)

ULB (2)

ULiège (2)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLouvain (1)

UCLL (1)

UGent (1)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2019 (1)

2005 (1)

Listing 1 - 2 of 2
Sort by

Book
Moufang Sets and Structurable Division Algebras
Authors: --- ---
ISBN: 9781470435547 1470435543 Year: 2019 Publisher: Providence, RI : American Mathematical Society,

Loading...
Export citation

Choose an application

Bookmark

Abstract

"A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole group. It has been known for some time that every Jordan division algebra gives rise to a Moufang set with abelian root groups. We extend this result by showing that every structurable division algebra gives rise to a Moufang set, and conversely, we show that every Moufang set arising from a simple linear algebraic group of relative rank one over an arbitrary field k of characteristic different from 2 and 3 arises from a structurable division algebra. We also obtain explicit formulas for the root groups, the T-map and the Hua maps of these Moufang sets. This is particularly useful for the Moufang sets arising from exceptional linear algebraic groups"--

Combinatorics of Coxeter Groups
Authors: ---
ISBN: 3540442383 9783540442387 3642079229 3540275967 Year: 2005 Volume: 231 Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Coxeter groups are of central importance in several areas of algebra, geometry, and combinatorics. This clear and rigorous exposition focuses on the combinatorial aspects of Coxeter groups, such as reduced expressions, partial order of group elements, enumeration, associated graphs and combinatorial cell complexes, and connections with combinatorial representation theory. While Coxeter groups have already been exposited from algebraic and geometric perspectives, this text is the first one to focus mainly on the combinatorial aspects of Coxeter groups. The first part of the book provides a self-contained introduction to combinatorial Coxeter group theory. The emphasis here is on the combinatorics of reduced decompositions, Bruhat order, weak order, and some aspects of root systems. The second part deals with more advanced topics, such as Kazhdan-Lusztig polynomials and representations, enumeration, and combinatorial descriptions of the classical finite and affine Weyl groups. A wide variety of exercises, ranging from easy to quite difficult are also included. The book will serve graduate students as well as researchers. Anders Björner is Professor of Mathematics at the Royal Institute of Technology in Stockholm, Sweden. Francesco Brenti is Professor of Mathematics at the University of Rome.

Listing 1 - 2 of 2
Sort by