Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2019 (1)

2016 (3)

Listing 1 - 4 of 4
Sort by

Book
Ca2+ Signaling and Heart Rhythm
Authors: --- --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ca2+ is a key second messenger in the intricate workings of the heart. In cardiac myocytes, Ca2+ signaling controls or modulates electrophysiological function, excitation-contraction coupling, contractile function, energy balance, cell death, and gene transcription. Thus, diverse Ca2+-dependent regulatory processes occur simultaneously within a cell. Yet, distinct signals can be resolved by local Ca2+ sensitive protein complexes and differential Ca2+ signal integration. In addition to its importance to normal cardiac function, such regulation is also crucial in disease conditions. Ca2+ is likely involved in ectopic cardiac rhythms in both atrial and ventricular tissues through generating triggered activity often appearing as delayed afterdepolarisations, particularly following cellular Ca overloading. Recent studies also implicate Ca2+ in Na+ channel expression and properties with consequences for conduction velocity and therefore arrhythmic substrate. At the cellular level, such regulation involves control of the activity of membrane ion channels and Ca2+ handling proteins. These in turn involve multiple extra- and intracellular signaling pathways. This e-book assembles review and original articles from experts in this field. It summarises major recent progress bearing on roles of Ca2+ in cardiac electrophysiological function encompassing both normal and abnormal cardiac function. These extend from physiological roles of Ca2+ signaling in pacemaker function, in particular generation of sino-atrial pacemaker potentials, to pathological roles of abnormal Ca2+ signaling in both atrial and ventricular arrhythmogenesis. It also seeks to bridge the gap between advances in basic science and development of new therapies.

Keywords

Heart --- Pak1 --- SA node --- STIM1 --- TRPC --- Ca2+ --- Orai1 --- PP2A --- voltage gated Ca2+ channels


Book
Ca2+ Signaling and Heart Rhythm
Authors: --- --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ca2+ is a key second messenger in the intricate workings of the heart. In cardiac myocytes, Ca2+ signaling controls or modulates electrophysiological function, excitation-contraction coupling, contractile function, energy balance, cell death, and gene transcription. Thus, diverse Ca2+-dependent regulatory processes occur simultaneously within a cell. Yet, distinct signals can be resolved by local Ca2+ sensitive protein complexes and differential Ca2+ signal integration. In addition to its importance to normal cardiac function, such regulation is also crucial in disease conditions. Ca2+ is likely involved in ectopic cardiac rhythms in both atrial and ventricular tissues through generating triggered activity often appearing as delayed afterdepolarisations, particularly following cellular Ca overloading. Recent studies also implicate Ca2+ in Na+ channel expression and properties with consequences for conduction velocity and therefore arrhythmic substrate. At the cellular level, such regulation involves control of the activity of membrane ion channels and Ca2+ handling proteins. These in turn involve multiple extra- and intracellular signaling pathways. This e-book assembles review and original articles from experts in this field. It summarises major recent progress bearing on roles of Ca2+ in cardiac electrophysiological function encompassing both normal and abnormal cardiac function. These extend from physiological roles of Ca2+ signaling in pacemaker function, in particular generation of sino-atrial pacemaker potentials, to pathological roles of abnormal Ca2+ signaling in both atrial and ventricular arrhythmogenesis. It also seeks to bridge the gap between advances in basic science and development of new therapies.

Keywords

Heart --- Pak1 --- SA node --- STIM1 --- TRPC --- Ca2+ --- Orai1 --- PP2A --- voltage gated Ca2+ channels


Book
Ca2+ Signaling and Heart Rhythm
Authors: --- --- ---
Year: 2016 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ca2+ is a key second messenger in the intricate workings of the heart. In cardiac myocytes, Ca2+ signaling controls or modulates electrophysiological function, excitation-contraction coupling, contractile function, energy balance, cell death, and gene transcription. Thus, diverse Ca2+-dependent regulatory processes occur simultaneously within a cell. Yet, distinct signals can be resolved by local Ca2+ sensitive protein complexes and differential Ca2+ signal integration. In addition to its importance to normal cardiac function, such regulation is also crucial in disease conditions. Ca2+ is likely involved in ectopic cardiac rhythms in both atrial and ventricular tissues through generating triggered activity often appearing as delayed afterdepolarisations, particularly following cellular Ca overloading. Recent studies also implicate Ca2+ in Na+ channel expression and properties with consequences for conduction velocity and therefore arrhythmic substrate. At the cellular level, such regulation involves control of the activity of membrane ion channels and Ca2+ handling proteins. These in turn involve multiple extra- and intracellular signaling pathways. This e-book assembles review and original articles from experts in this field. It summarises major recent progress bearing on roles of Ca2+ in cardiac electrophysiological function encompassing both normal and abnormal cardiac function. These extend from physiological roles of Ca2+ signaling in pacemaker function, in particular generation of sino-atrial pacemaker potentials, to pathological roles of abnormal Ca2+ signaling in both atrial and ventricular arrhythmogenesis. It also seeks to bridge the gap between advances in basic science and development of new therapies.

Keywords

Heart --- Pak1 --- SA node --- STIM1 --- TRPC --- Ca2+ --- Orai1 --- PP2A --- voltage gated Ca2+ channels


Book
TRP Channels in Health and Disease
Author:
ISBN: 3039210831 3039210823 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Almost 25 years ago, the first mammalian transient receptor potential (TRP) channel was cloned and published. TRP channels now represent an extended family of 28 members fulfilling multiple roles in the living organism. Identified functions include control of body temperature, transmitter release, mineral homeostasis, chemical sensing, and survival mechanisms in a challenging environment. The TRP channel superfamily covers six families: TRPC with C for “canonical”, TRPA with A for “ankyrin”, TRPM with M for “melastatin”, TRPML with ML for “mucolipidin”, TRPP with P for “polycystin”, and TRPV with V for “vanilloid”. Over the last few years, new findings on TRP channels have confirmed their exceptional function as cellular sensors and effectors. This Special Book features a collection of 8 reviews and 7 original articles published in “Cells” summarizing the current state-of-the-art on TRP channel research, with a main focus on TRP channel activation, their physiological and pathophysiological function, and their roles as pharmacological targets for future therapeutic options.

Keywords

n/a --- transient receptor potential channels --- photochromic ligands --- elementary immunology --- Purkinje cell --- EPSC --- substance P --- chemicals --- organ toxicity --- lymphocytes --- HSP70 --- physiology --- bioavailable --- inflammatory bowel disease --- platelets --- pollutants --- yeast --- regulatory T cells --- kinase --- Saccharomyces cerevisiae --- manganese --- cerebellum --- TRP channel --- NHERF --- inflammation --- nanoHPLC-ESI MS/MS --- TRPM7 --- chemical probes --- TRPM8 --- dorsal column nuclei --- TRPV2 --- TRPV3 --- calcitonin gene-related peptide --- TRPV1 --- ion channels --- transient receptor potential --- 2D gel electrophoresis --- MALDI-TOF MS(/MS) --- TRPV4 --- overproduction --- sulfur mustard --- oxidative stress --- graft versus host disease --- menthol --- topical --- chemosensor --- AP18 --- calcium signalling --- mucosal epithelium --- cuneate nucleus --- production platform --- TRPC channels --- ulcerative colitis --- channel structure --- xerostomia --- neutrophils --- cardiovascular system --- TRPC5 --- TRPC6 --- TRPC3 --- TRPC4 --- calcium signaling --- protein purification --- adipose tissue --- transient receptor potential (TRP) channels --- sodium --- TH17 --- diacylglycerol --- hypersensitivity --- TRPY1 --- GABAB --- HEK293 --- thrombosis --- ion channel --- TRPC --- pathophysiology --- SMAD --- toxicology --- endothelium --- calcium --- proteomics --- TRPA1 --- salivary glands --- TRP channels --- lipid mediators --- sensors --- radiation --- TRPM4 channel --- human medulla oblongata --- mGluR1 --- small molecules --- TRPC3 pharmacology

Listing 1 - 4 of 4
Sort by