Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Bioactive compounds and drugs are designed and screened on the basis of specific molecular targets as well as via the identification of active ingredients from traditional medicine or by serendipitous discovery. The development of novel therapeutic strategies not only requires a deep knowledge of the molecular processes and the cellular pathways involved in each pathological condition and disease, but also the specific protein targets and the effects of drug binding on protein conformation and activity. Understanding of how drugs can modify and modulate specific cellular pathways and functions will be helpful during the process of drug development and clinical trials.
Research & information: general --- Chemistry --- serum half-life extension --- fatty acid conjugation --- FcRn-mediated recycling --- serum albumin --- translocator protein (TSPO) --- CoCl2 --- mitochondrial membrane potential --- reactive oxygen species (ROS) --- cell viability --- cell death --- lung cancer cell line --- acetylcholinesterase --- amyloid beta aggregation --- neuroprotection --- molecular docking --- multi-target drug --- structure–activity relationship --- brassicasterol --- phytosterols --- HSV --- Mycobacterium tuberculosis --- HSV-1 DNA polymerase --- HSV-1 TK --- human CDK2 --- ACE --- UDP-galactopyranose mutase --- heat shock protein 70 --- Hsp70 --- piperine --- fluorescence spectroscopy --- molecular dynamics --- molecular biophysics --- GADD45β --- MKK7 --- multiple myeloma --- protein-ligand interaction --- STD-NMR --- sigma receptors --- sigma ligands --- cancer --- SIGMAR1 --- PGRMC1 --- TMEM97 --- NCI60 COMPARE analysis --- membrane --- lipid-protein interaction --- lipid signalling --- kinase regulation --- phosphatidylinositols --- molecular docking simulation --- target identification --- small-molecule derivatives of salicylanilide --- drug discovery --- drug development --- thyroid diseases --- endocrine disruptor compound --- human umbilical artery --- vascular homeostasis
Choose an application
Bioactive compounds and drugs are designed and screened on the basis of specific molecular targets as well as via the identification of active ingredients from traditional medicine or by serendipitous discovery. The development of novel therapeutic strategies not only requires a deep knowledge of the molecular processes and the cellular pathways involved in each pathological condition and disease, but also the specific protein targets and the effects of drug binding on protein conformation and activity. Understanding of how drugs can modify and modulate specific cellular pathways and functions will be helpful during the process of drug development and clinical trials.
serum half-life extension --- fatty acid conjugation --- FcRn-mediated recycling --- serum albumin --- translocator protein (TSPO) --- CoCl2 --- mitochondrial membrane potential --- reactive oxygen species (ROS) --- cell viability --- cell death --- lung cancer cell line --- acetylcholinesterase --- amyloid beta aggregation --- neuroprotection --- molecular docking --- multi-target drug --- structure–activity relationship --- brassicasterol --- phytosterols --- HSV --- Mycobacterium tuberculosis --- HSV-1 DNA polymerase --- HSV-1 TK --- human CDK2 --- ACE --- UDP-galactopyranose mutase --- heat shock protein 70 --- Hsp70 --- piperine --- fluorescence spectroscopy --- molecular dynamics --- molecular biophysics --- GADD45β --- MKK7 --- multiple myeloma --- protein-ligand interaction --- STD-NMR --- sigma receptors --- sigma ligands --- cancer --- SIGMAR1 --- PGRMC1 --- TMEM97 --- NCI60 COMPARE analysis --- membrane --- lipid-protein interaction --- lipid signalling --- kinase regulation --- phosphatidylinositols --- molecular docking simulation --- target identification --- small-molecule derivatives of salicylanilide --- drug discovery --- drug development --- thyroid diseases --- endocrine disruptor compound --- human umbilical artery --- vascular homeostasis
Choose an application
Bioactive compounds and drugs are designed and screened on the basis of specific molecular targets as well as via the identification of active ingredients from traditional medicine or by serendipitous discovery. The development of novel therapeutic strategies not only requires a deep knowledge of the molecular processes and the cellular pathways involved in each pathological condition and disease, but also the specific protein targets and the effects of drug binding on protein conformation and activity. Understanding of how drugs can modify and modulate specific cellular pathways and functions will be helpful during the process of drug development and clinical trials.
Research & information: general --- Chemistry --- serum half-life extension --- fatty acid conjugation --- FcRn-mediated recycling --- serum albumin --- translocator protein (TSPO) --- CoCl2 --- mitochondrial membrane potential --- reactive oxygen species (ROS) --- cell viability --- cell death --- lung cancer cell line --- acetylcholinesterase --- amyloid beta aggregation --- neuroprotection --- molecular docking --- multi-target drug --- structure–activity relationship --- brassicasterol --- phytosterols --- HSV --- Mycobacterium tuberculosis --- HSV-1 DNA polymerase --- HSV-1 TK --- human CDK2 --- ACE --- UDP-galactopyranose mutase --- heat shock protein 70 --- Hsp70 --- piperine --- fluorescence spectroscopy --- molecular dynamics --- molecular biophysics --- GADD45β --- MKK7 --- multiple myeloma --- protein-ligand interaction --- STD-NMR --- sigma receptors --- sigma ligands --- cancer --- SIGMAR1 --- PGRMC1 --- TMEM97 --- NCI60 COMPARE analysis --- membrane --- lipid-protein interaction --- lipid signalling --- kinase regulation --- phosphatidylinositols --- molecular docking simulation --- target identification --- small-molecule derivatives of salicylanilide --- drug discovery --- drug development --- thyroid diseases --- endocrine disruptor compound --- human umbilical artery --- vascular homeostasis --- serum half-life extension --- fatty acid conjugation --- FcRn-mediated recycling --- serum albumin --- translocator protein (TSPO) --- CoCl2 --- mitochondrial membrane potential --- reactive oxygen species (ROS) --- cell viability --- cell death --- lung cancer cell line --- acetylcholinesterase --- amyloid beta aggregation --- neuroprotection --- molecular docking --- multi-target drug --- structure–activity relationship --- brassicasterol --- phytosterols --- HSV --- Mycobacterium tuberculosis --- HSV-1 DNA polymerase --- HSV-1 TK --- human CDK2 --- ACE --- UDP-galactopyranose mutase --- heat shock protein 70 --- Hsp70 --- piperine --- fluorescence spectroscopy --- molecular dynamics --- molecular biophysics --- GADD45β --- MKK7 --- multiple myeloma --- protein-ligand interaction --- STD-NMR --- sigma receptors --- sigma ligands --- cancer --- SIGMAR1 --- PGRMC1 --- TMEM97 --- NCI60 COMPARE analysis --- membrane --- lipid-protein interaction --- lipid signalling --- kinase regulation --- phosphatidylinositols --- molecular docking simulation --- target identification --- small-molecule derivatives of salicylanilide --- drug discovery --- drug development --- thyroid diseases --- endocrine disruptor compound --- human umbilical artery --- vascular homeostasis
Choose an application
Even though initially considered as a passive means for storing energy, lipids are now regarded as multifaceted molecules with crucial structural and functional activities. For instance, some of them play essential roles as key components of cell membranes whereas others act as signaling molecules in the regulation of cell homeostasis. In recent years, lipid research has attracted increasing interest because of the involvement of this class of compounds in human health. Indeed, a plethora of pathological conditions are characterized by alterations in lipid metabolism, such as cardiovascular diseases and brain disorders. This Special Issue is a collection of papers from different experts in lipid research, with the aim of providing new insights into the physiopathological involvement of lipids and their impact on human health. This collection also demonstrates the usefulness of interdisciplinary approaches in the development of novel methods to study and manipulate lipid metabolism, which may represent an attractive target for designing effective therapeutic strategies to counteract numerous pathologies.
Medicine --- neutral sphingomyelinase --- radiation --- sphingomyelin metabolism --- pathology --- cell signaling --- brain --- adipose tissue --- breast cancer --- epinephrine --- breast reconstruction --- epicardial fat thickness --- visceral fat thickness --- high-sensitivity c-reactive protein --- leptin --- gender --- female --- hippocampus --- frontal cortex --- adiponectin --- haptoglobin --- lipocalin --- BDNF --- synaptic proteins --- phosphatidylinositol 4,5-bisphosphate --- phospholipase C --- cholesterol --- high-cholesterol diet --- BET proteins --- cell proliferation --- epigenetics --- HMGCR --- JQ1 --- LDLr --- lipid metabolism --- SREBP --- TMEM97 --- atherosclerosis --- diabetes mellitus --- cardiovascular disease --- chronic inflammation --- hyperglycemia --- mutations --- lipid --- fatty acid --- glyceride --- steroid --- phospholipid --- oral drug absorption --- prodrug --- phospholipase A2 (PLA2) --- acid sphingomyelinase --- SOD --- liver --- eicosanoids --- ischemic stroke --- ischemia --- lipoproteins --- polyunsaturated fatty acids --- angiogenesis --- high-density lipoprotein --- endothelial cell --- metabolism --- metabolic reprogramming --- pulmonary fibrosis --- lipid mediators --- sphingolipids --- sphingosine-1-phosphate --- sphingosine kinase 1 --- prostaglandins --- lysophosphatidic acid --- autotaxin --- G-protein coupled receptors --- lysocardiolipin acyltransferase --- phospholipase D --- oxidized phospholipids --- DNA damage response --- double strand breaks --- ATM --- ionizing radiation --- metabolic stress --- oxidative stress --- p53 --- nuclear sphingolipids --- lipophagy --- lipolysis --- lipid droplets --- lipid storage diseases --- lipid metabolism diseases --- mTORC1 --- TFEB --- Cholesterol --- Fatty acids --- Lipid mediators --- Lipids --- Lipophagy --- Sphingolipids --- neutral sphingomyelinase --- radiation --- sphingomyelin metabolism --- pathology --- cell signaling --- brain --- adipose tissue --- breast cancer --- epinephrine --- breast reconstruction --- epicardial fat thickness --- visceral fat thickness --- high-sensitivity c-reactive protein --- leptin --- gender --- female --- hippocampus --- frontal cortex --- adiponectin --- haptoglobin --- lipocalin --- BDNF --- synaptic proteins --- phosphatidylinositol 4,5-bisphosphate --- phospholipase C --- cholesterol --- high-cholesterol diet --- BET proteins --- cell proliferation --- epigenetics --- HMGCR --- JQ1 --- LDLr --- lipid metabolism --- SREBP --- TMEM97 --- atherosclerosis --- diabetes mellitus --- cardiovascular disease --- chronic inflammation --- hyperglycemia --- mutations --- lipid --- fatty acid --- glyceride --- steroid --- phospholipid --- oral drug absorption --- prodrug --- phospholipase A2 (PLA2) --- acid sphingomyelinase --- SOD --- liver --- eicosanoids --- ischemic stroke --- ischemia --- lipoproteins --- polyunsaturated fatty acids --- angiogenesis --- high-density lipoprotein --- endothelial cell --- metabolism --- metabolic reprogramming --- pulmonary fibrosis --- lipid mediators --- sphingolipids --- sphingosine-1-phosphate --- sphingosine kinase 1 --- prostaglandins --- lysophosphatidic acid --- autotaxin --- G-protein coupled receptors --- lysocardiolipin acyltransferase --- phospholipase D --- oxidized phospholipids --- DNA damage response --- double strand breaks --- ATM --- ionizing radiation --- metabolic stress --- oxidative stress --- p53 --- nuclear sphingolipids --- lipophagy --- lipolysis --- lipid droplets --- lipid storage diseases --- lipid metabolism diseases --- mTORC1 --- TFEB --- Cholesterol --- Fatty acids --- Lipid mediators --- Lipids --- Lipophagy --- Sphingolipids
Choose an application
Even though initially considered as a passive means for storing energy, lipids are now regarded as multifaceted molecules with crucial structural and functional activities. For instance, some of them play essential roles as key components of cell membranes whereas others act as signaling molecules in the regulation of cell homeostasis. In recent years, lipid research has attracted increasing interest because of the involvement of this class of compounds in human health. Indeed, a plethora of pathological conditions are characterized by alterations in lipid metabolism, such as cardiovascular diseases and brain disorders. This Special Issue is a collection of papers from different experts in lipid research, with the aim of providing new insights into the physiopathological involvement of lipids and their impact on human health. This collection also demonstrates the usefulness of interdisciplinary approaches in the development of novel methods to study and manipulate lipid metabolism, which may represent an attractive target for designing effective therapeutic strategies to counteract numerous pathologies.
neutral sphingomyelinase --- radiation --- sphingomyelin metabolism --- pathology --- cell signaling --- brain --- adipose tissue --- breast cancer --- epinephrine --- breast reconstruction --- epicardial fat thickness --- visceral fat thickness --- high-sensitivity c-reactive protein --- leptin --- gender --- female --- hippocampus --- frontal cortex --- adiponectin --- haptoglobin --- lipocalin --- BDNF --- synaptic proteins --- phosphatidylinositol 4,5-bisphosphate --- phospholipase C --- cholesterol --- high-cholesterol diet --- BET proteins --- cell proliferation --- epigenetics --- HMGCR --- JQ1 --- LDLr --- lipid metabolism --- SREBP --- TMEM97 --- atherosclerosis --- diabetes mellitus --- cardiovascular disease --- chronic inflammation --- hyperglycemia --- mutations --- lipid --- fatty acid --- glyceride --- steroid --- phospholipid --- oral drug absorption --- prodrug --- phospholipase A2 (PLA2) --- acid sphingomyelinase --- SOD --- liver --- eicosanoids --- ischemic stroke --- ischemia --- lipoproteins --- polyunsaturated fatty acids --- angiogenesis --- high-density lipoprotein --- endothelial cell --- metabolism --- metabolic reprogramming --- pulmonary fibrosis --- lipid mediators --- sphingolipids --- sphingosine-1-phosphate --- sphingosine kinase 1 --- prostaglandins --- lysophosphatidic acid --- autotaxin --- G-protein coupled receptors --- lysocardiolipin acyltransferase --- phospholipase D --- oxidized phospholipids --- DNA damage response --- double strand breaks --- ATM --- ionizing radiation --- metabolic stress --- oxidative stress --- p53 --- nuclear sphingolipids --- lipophagy --- lipolysis --- lipid droplets --- lipid storage diseases --- lipid metabolism diseases --- mTORC1 --- TFEB --- Cholesterol --- Fatty acids --- Lipid mediators --- Lipids --- Lipophagy --- Sphingolipids
Listing 1 - 5 of 5 |
Sort by
|