Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULB (2)

ULiège (2)

VIVES (2)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2022 (6)

Listing 1 - 6 of 6
Sort by

Book
A Themed Issue in Honor of Professor Raphael Mechoulam: The Father of Cannabinoid and Endocannabinoid Research
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

During the last 60 years the relevance of cannabis (Cannabis sativa or Cannabis indica) ingredients, like the psychoactive Δ9-tetrahydrocannabinol (THC), cannabidiol, 120+ additional cannabinoids and 440+ non-cannabinoid compounds, for human health and disease has become apparent. Approximately 30 years after the elucidation of THC structure the molecular reasons for the biological activity of these plant extracts were made clearer by the discovery of endocannabinoids, that are endogenous lipids able to bind to the same receptors activated by THC. Besides endocannabinoids, that include several N-acylethanolamines and acylesters, a complex array of receptors, metabolic enzymes, transporters (transmembrane, intracellular and extracellular carriers) were also discovered, and altogether they form a so-called “endocannabinoid system” that has been shown to finely tune the manifold biological activities of these lipid signals. Both plant-derived cannabinoids and endocannabinoids were first discovered by the group led by Prof. Dr. Raphael Mechoulam, who has just celebrated his 90th birthday and clearly stood out as a giant of modern science. The many implications of his seminal work for chemistry, biochemistry, biology, pharmacology and medicine are described in this special issue by the scientists who reached during the last 20 years the highest recognition in the field of (endo)cannabinoid research, receiving the Mechoulam Award for their major contributions. I thank them for having accepted my invitation to be part of this honorary issue of Molecules, and Raphi for continuing to illuminate our field with his always inspiring investigations and new ideas.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- cannabinoid --- MRI-1867 --- hybrid ligand --- CB1 receptor antagonist --- iNOS inhibitor --- rimonabant --- intracerebroventricular administration --- alcohol craving --- two-bottle paradigm --- drinking in the dark --- N-acyltransferase --- anandamide --- endocannabinoid --- phospholipase A2 --- cannabichromene --- cannabidiolic acid --- cannabidivarin --- cannabidivarinic acid --- phytocannabinoids --- tetrahydrocannabivarin --- 4′-fluoro-cannabidiol --- cannabinoid tetrad --- elevated plus maze --- catalepsy --- marble bury --- HUF-101 --- equilibrative nucleoside transporter --- CB1 --- biased signaling --- functional selectivity --- G-protein --- β-arrestin --- cannabigerol --- anti-inflammatory --- obesity --- cannabinoid receptor 2 (CB2R) --- microglia --- inflammaging --- memory --- lipofuscin --- aminoalkylindole --- allodynia --- antinociception --- cannabinoid receptor --- CP55940 --- JWH-018 --- K2 --- pravadoline --- spice --- WIN55212-2 --- type 1 cannabinoid receptor CB1 --- cholesterol --- hippocampus --- frontal cortex --- synaptosomes --- rescue model --- anti-CB1 antibody --- cannabinoids --- GPR55 receptors --- VCE-006.1 --- chromenopyrazole --- Parkinson’s disease --- 6-hydroxydopamine --- lipopolysaccharide --- amyotrophic lateral sclerosis --- mSOD1 mice --- TDP-43 transgenic mice --- PPARs --- gut microbiome --- intestine --- ghrelin --- LEAP2 --- n/a --- 4'-fluoro-cannabidiol --- Parkinson's disease


Book
A Themed Issue in Honor of Professor Raphael Mechoulam: The Father of Cannabinoid and Endocannabinoid Research
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

During the last 60 years the relevance of cannabis (Cannabis sativa or Cannabis indica) ingredients, like the psychoactive Δ9-tetrahydrocannabinol (THC), cannabidiol, 120+ additional cannabinoids and 440+ non-cannabinoid compounds, for human health and disease has become apparent. Approximately 30 years after the elucidation of THC structure the molecular reasons for the biological activity of these plant extracts were made clearer by the discovery of endocannabinoids, that are endogenous lipids able to bind to the same receptors activated by THC. Besides endocannabinoids, that include several N-acylethanolamines and acylesters, a complex array of receptors, metabolic enzymes, transporters (transmembrane, intracellular and extracellular carriers) were also discovered, and altogether they form a so-called “endocannabinoid system” that has been shown to finely tune the manifold biological activities of these lipid signals. Both plant-derived cannabinoids and endocannabinoids were first discovered by the group led by Prof. Dr. Raphael Mechoulam, who has just celebrated his 90th birthday and clearly stood out as a giant of modern science. The many implications of his seminal work for chemistry, biochemistry, biology, pharmacology and medicine are described in this special issue by the scientists who reached during the last 20 years the highest recognition in the field of (endo)cannabinoid research, receiving the Mechoulam Award for their major contributions. I thank them for having accepted my invitation to be part of this honorary issue of Molecules, and Raphi for continuing to illuminate our field with his always inspiring investigations and new ideas.


Book
A Themed Issue in Honor of Professor Raphael Mechoulam: The Father of Cannabinoid and Endocannabinoid Research
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

During the last 60 years the relevance of cannabis (Cannabis sativa or Cannabis indica) ingredients, like the psychoactive Δ9-tetrahydrocannabinol (THC), cannabidiol, 120+ additional cannabinoids and 440+ non-cannabinoid compounds, for human health and disease has become apparent. Approximately 30 years after the elucidation of THC structure the molecular reasons for the biological activity of these plant extracts were made clearer by the discovery of endocannabinoids, that are endogenous lipids able to bind to the same receptors activated by THC. Besides endocannabinoids, that include several N-acylethanolamines and acylesters, a complex array of receptors, metabolic enzymes, transporters (transmembrane, intracellular and extracellular carriers) were also discovered, and altogether they form a so-called “endocannabinoid system” that has been shown to finely tune the manifold biological activities of these lipid signals. Both plant-derived cannabinoids and endocannabinoids were first discovered by the group led by Prof. Dr. Raphael Mechoulam, who has just celebrated his 90th birthday and clearly stood out as a giant of modern science. The many implications of his seminal work for chemistry, biochemistry, biology, pharmacology and medicine are described in this special issue by the scientists who reached during the last 20 years the highest recognition in the field of (endo)cannabinoid research, receiving the Mechoulam Award for their major contributions. I thank them for having accepted my invitation to be part of this honorary issue of Molecules, and Raphi for continuing to illuminate our field with his always inspiring investigations and new ideas.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- cannabinoid --- MRI-1867 --- hybrid ligand --- CB1 receptor antagonist --- iNOS inhibitor --- rimonabant --- intracerebroventricular administration --- alcohol craving --- two-bottle paradigm --- drinking in the dark --- N-acyltransferase --- anandamide --- endocannabinoid --- phospholipase A2 --- cannabichromene --- cannabidiolic acid --- cannabidivarin --- cannabidivarinic acid --- phytocannabinoids --- tetrahydrocannabivarin --- 4'-fluoro-cannabidiol --- cannabinoid tetrad --- elevated plus maze --- catalepsy --- marble bury --- HUF-101 --- equilibrative nucleoside transporter --- CB1 --- biased signaling --- functional selectivity --- G-protein --- β-arrestin --- cannabigerol --- anti-inflammatory --- obesity --- cannabinoid receptor 2 (CB2R) --- microglia --- inflammaging --- memory --- lipofuscin --- aminoalkylindole --- allodynia --- antinociception --- cannabinoid receptor --- CP55940 --- JWH-018 --- K2 --- pravadoline --- spice --- WIN55212-2 --- type 1 cannabinoid receptor CB1 --- cholesterol --- hippocampus --- frontal cortex --- synaptosomes --- rescue model --- anti-CB1 antibody --- cannabinoids --- GPR55 receptors --- VCE-006.1 --- chromenopyrazole --- Parkinson's disease --- 6-hydroxydopamine --- lipopolysaccharide --- amyotrophic lateral sclerosis --- mSOD1 mice --- TDP-43 transgenic mice --- PPARs --- gut microbiome --- intestine --- ghrelin --- LEAP2 --- cannabinoid --- MRI-1867 --- hybrid ligand --- CB1 receptor antagonist --- iNOS inhibitor --- rimonabant --- intracerebroventricular administration --- alcohol craving --- two-bottle paradigm --- drinking in the dark --- N-acyltransferase --- anandamide --- endocannabinoid --- phospholipase A2 --- cannabichromene --- cannabidiolic acid --- cannabidivarin --- cannabidivarinic acid --- phytocannabinoids --- tetrahydrocannabivarin --- 4'-fluoro-cannabidiol --- cannabinoid tetrad --- elevated plus maze --- catalepsy --- marble bury --- HUF-101 --- equilibrative nucleoside transporter --- CB1 --- biased signaling --- functional selectivity --- G-protein --- β-arrestin --- cannabigerol --- anti-inflammatory --- obesity --- cannabinoid receptor 2 (CB2R) --- microglia --- inflammaging --- memory --- lipofuscin --- aminoalkylindole --- allodynia --- antinociception --- cannabinoid receptor --- CP55940 --- JWH-018 --- K2 --- pravadoline --- spice --- WIN55212-2 --- type 1 cannabinoid receptor CB1 --- cholesterol --- hippocampus --- frontal cortex --- synaptosomes --- rescue model --- anti-CB1 antibody --- cannabinoids --- GPR55 receptors --- VCE-006.1 --- chromenopyrazole --- Parkinson's disease --- 6-hydroxydopamine --- lipopolysaccharide --- amyotrophic lateral sclerosis --- mSOD1 mice --- TDP-43 transgenic mice --- PPARs --- gut microbiome --- intestine --- ghrelin --- LEAP2


Book
Recent Developments on Protein–Ligand Interactions : From Structure, Function to Applications
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50 --- pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50


Book
Recent Developments on Protein–Ligand Interactions : From Structure, Function to Applications
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.

Keywords

Research & information: general --- Biology, life sciences --- Biochemistry --- pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50


Book
Recent Developments on Protein–Ligand Interactions : From Structure, Function to Applications
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Protein–ligand interactions play a fundamental role in most major biological functions. The number and diversity of small molecules that interact with proteins, whether naturally or not, can quickly become overwhelming. They are as essential as amino acids, nucleic acids or membrane lipids, enabling a large number of essential functions. One need only think of carbohydrates or even just ATP to be certain. They are also essential in drug discovery. With the increasing structural information of proteins and protein–ligand complexes, molecular modelling, molecular dynamics, and chemoinformatics approaches are often required for the efficient analysis of a large number of such complexes and to provide insights. Similarly, numerous computational approaches have been developed to characterize and use the knowledge of such interactions, which can lead to drug candidates. "Recent Developments on Protein–Ligand Interactions: From Structure, Function to Applications" was dedicated to the different aspect of protein–ligand analysis and/or prediction using computational approaches, as well as new developments dedicated to these tasks. It will interest both specialists and non-specialists, as the presented studies cover a very large spectra in terms of methodologies and applications. It underlined the variety of scientific area linked to these questions, i.e., chemistry, biology, physics, informatics, bioinformatics, structural bioinformatics and chemoinformatics.

Keywords

pimaricin thioesterase --- protein-substrate interaction --- macrocyclization --- molecular dynamics (MD) simulation --- pre-reaction state --- folate --- folate receptor --- peptide conjugation --- click reaction --- biolayer interferometry --- acetylcholinesterase --- resistance --- organophosphorus --- pesticides --- molecular modeling --- lepidopterous --- insects --- conserved patterns --- similarity --- 3D-patterns --- epigenetics --- protein-RNA interaction --- RRM domain inhibitor --- NMR fragment-based screening --- TDP-43 --- galectin-1 --- gulopyranosides --- fluorescence polarization --- benzamide --- selective --- phospholipase C gamma 1 --- SLP76 --- virtual screening --- pharmacophore mapping --- molecular docking --- molecular dynamics --- caspase inhibition --- protein-ligand binding free energy --- Monte Carlo sampling --- docking and scoring --- molecular conformational sampling --- procollagen C-proteinase enhancer-1 --- glycosaminoglycans --- computational analysis of protein-glycosaminoglycan interactions --- calcium ions --- fragment-based docking --- protein–ligand analysis --- drug discovery and design --- structure–activity relationships --- bioremediation --- High Energy Molecules --- HMX --- protein design --- nitroreductase --- flavoprotein --- substrate specificity --- pharmacophore --- secretoglobin --- odorant-binding protein --- chemical communication --- pheromone --- N-phenyl-1-naphthylamine --- in silico docking --- protein–ligand interactions --- 2D interaction maps --- ligand-binding assays --- protein-ligand complexes --- dataset --- clustering --- structural alignment --- refinement --- PD-1/PD-L1 --- immune checkpoint inhibitors --- biphenyl-conjugated bromotyrosine --- amino acid conjugation --- amino-X --- in silico simulation --- IC50

Listing 1 - 6 of 6
Sort by