Narrow your search
Listing 1 - 10 of 16 << page
of 2
>>
Sort by

Book
Molecular Determinants of γδ T Cell Selection, Maintenance and Function
Authors: --- ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact

Keywords

T Cell Receptor --- TCR --- γδ T cells


Book
Molecular Determinants of γδ T Cell Selection, Maintenance and Function
Authors: --- ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Molecular Determinants of γδ T Cell Selection, Maintenance and Function
Authors: --- ---
Year: 2019 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Understanding gamma delta T Cell Multifunctionality - Towards Immunotherapeutic Applications
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Diacylglycerol Kinase Signalling
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol (DG), catalyzing its conversion into phosphatidic acid (PA). This reaction attenuates membrane DG levels, limiting the localization/activation of signaling proteins that bind this lipid. Initially recognized as modulators of classical and novel PKC family members, the function of the DGK has further expanded with the identification of novel DG effectors including Ras Guanyl nucleotide-releasing proteins (RasGRP) and chimaerin Rac GTPases. The product of the DGK reaction, PA, is also a signaling lipid that mediates activation of multiple proteins including the mammalian target of rapamycin (mTOR). The DGK pathway thus modulates two lipids with important signaling properties that are also key intermediates in lipid metabolism and membrane trafficking. The DGK family in eukaryotes comprises 10 different members grouped into five different subfamilies characterized by the presence of particular regulatory motifs. These regions allow the different DGK isoforms to establish specific complexes and/or to be recruited to specific subcellular compartments. The subtle regulation of DG and PA catalyzed byspecific DGKs is sensed by a restricted set of molecules, providing the means for spatio-temporal regulation of signals in highly specialized cell systems. In the recent years, multiple studies have unveiled the functions of specific isoforms, their mechanisms of regulation and their participation in different pathways leading to and from DG and PA. Animal models have greatly helped to understand the specialized contribution of DGK mediated signals, particularly in the immune and central nervous systems. Mice deficient for individual DGK isoforms show defects in T and B cell functions, dendritic spine maintenance, osteoclast and mechanical-induced skeletal muscle formation. Studies in flies and worms link DGK mediated DAG metabolism with mTOR- mediated regulation of lifespan and stress responses. In plants DGK mediated PA formation contributes to plant responses to environmental signals. Aberrant DGK function has been recently associated with pathological states, an expected consequence of the essential role of these enzymes in the regulation of multiple tissue and systemic functions. DGK mutations/deletions have been related to human diseases including diabetes, atypical hemolytic-uremic syndrome, Parkinson disease and bipolar disorders. On the contrary DGK upregulation emerges as a non-oncogenic addition of certain tumors and represents one of the main mechanism by which cancer evades the immune attack. As a result, the DGK field emerges an exciting new area of research with important therapeutic potential.


Book
Understanding gamma delta T Cell Multifunctionality - Towards Immunotherapeutic Applications
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact

The T cell receptor factsbook
Authors: ---
ISBN: 1281038350 9786611038359 0080542646 0124413528 9780124413528 9781435603196 1435603192 9780080542645 9781281038357 Year: 2001 Publisher: San Diego, Calif. : Academic Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The T Cell Receptor FactsBook contains entries on all the 176 functional variable, diversity, joining, and constant regions of the human T cell receptor, including alpha, beta, gamma, and delta loci. Introductory chapters summarize information of T cell receptor chain synthesis, chromosomal location, and an overview of the human T cell receptor loci.


Book
Understanding gamma delta T Cell Multifunctionality - Towards Immunotherapeutic Applications
Authors: --- ---
Year: 2020 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact


Book
Diacylglycerol Kinase Signalling
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol (DG), catalyzing its conversion into phosphatidic acid (PA). This reaction attenuates membrane DG levels, limiting the localization/activation of signaling proteins that bind this lipid. Initially recognized as modulators of classical and novel PKC family members, the function of the DGK has further expanded with the identification of novel DG effectors including Ras Guanyl nucleotide-releasing proteins (RasGRP) and chimaerin Rac GTPases. The product of the DGK reaction, PA, is also a signaling lipid that mediates activation of multiple proteins including the mammalian target of rapamycin (mTOR). The DGK pathway thus modulates two lipids with important signaling properties that are also key intermediates in lipid metabolism and membrane trafficking. The DGK family in eukaryotes comprises 10 different members grouped into five different subfamilies characterized by the presence of particular regulatory motifs. These regions allow the different DGK isoforms to establish specific complexes and/or to be recruited to specific subcellular compartments. The subtle regulation of DG and PA catalyzed byspecific DGKs is sensed by a restricted set of molecules, providing the means for spatio-temporal regulation of signals in highly specialized cell systems. In the recent years, multiple studies have unveiled the functions of specific isoforms, their mechanisms of regulation and their participation in different pathways leading to and from DG and PA. Animal models have greatly helped to understand the specialized contribution of DGK mediated signals, particularly in the immune and central nervous systems. Mice deficient for individual DGK isoforms show defects in T and B cell functions, dendritic spine maintenance, osteoclast and mechanical-induced skeletal muscle formation. Studies in flies and worms link DGK mediated DAG metabolism with mTOR- mediated regulation of lifespan and stress responses. In plants DGK mediated PA formation contributes to plant responses to environmental signals. Aberrant DGK function has been recently associated with pathological states, an expected consequence of the essential role of these enzymes in the regulation of multiple tissue and systemic functions. DGK mutations/deletions have been related to human diseases including diabetes, atypical hemolytic-uremic syndrome, Parkinson disease and bipolar disorders. On the contrary DGK upregulation emerges as a non-oncogenic addition of certain tumors and represents one of the main mechanism by which cancer evades the immune attack. As a result, the DGK field emerges an exciting new area of research with important therapeutic potential.


Book
Diacylglycerol Kinase Signalling
Authors: --- ---
Year: 2017 Publisher: Frontiers Media SA

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diacylglycerol kinases (DGKs) phosphorylate diacylglycerol (DG), catalyzing its conversion into phosphatidic acid (PA). This reaction attenuates membrane DG levels, limiting the localization/activation of signaling proteins that bind this lipid. Initially recognized as modulators of classical and novel PKC family members, the function of the DGK has further expanded with the identification of novel DG effectors including Ras Guanyl nucleotide-releasing proteins (RasGRP) and chimaerin Rac GTPases. The product of the DGK reaction, PA, is also a signaling lipid that mediates activation of multiple proteins including the mammalian target of rapamycin (mTOR). The DGK pathway thus modulates two lipids with important signaling properties that are also key intermediates in lipid metabolism and membrane trafficking. The DGK family in eukaryotes comprises 10 different members grouped into five different subfamilies characterized by the presence of particular regulatory motifs. These regions allow the different DGK isoforms to establish specific complexes and/or to be recruited to specific subcellular compartments. The subtle regulation of DG and PA catalyzed byspecific DGKs is sensed by a restricted set of molecules, providing the means for spatio-temporal regulation of signals in highly specialized cell systems. In the recent years, multiple studies have unveiled the functions of specific isoforms, their mechanisms of regulation and their participation in different pathways leading to and from DG and PA. Animal models have greatly helped to understand the specialized contribution of DGK mediated signals, particularly in the immune and central nervous systems. Mice deficient for individual DGK isoforms show defects in T and B cell functions, dendritic spine maintenance, osteoclast and mechanical-induced skeletal muscle formation. Studies in flies and worms link DGK mediated DAG metabolism with mTOR- mediated regulation of lifespan and stress responses. In plants DGK mediated PA formation contributes to plant responses to environmental signals. Aberrant DGK function has been recently associated with pathological states, an expected consequence of the essential role of these enzymes in the regulation of multiple tissue and systemic functions. DGK mutations/deletions have been related to human diseases including diabetes, atypical hemolytic-uremic syndrome, Parkinson disease and bipolar disorders. On the contrary DGK upregulation emerges as a non-oncogenic addition of certain tumors and represents one of the main mechanism by which cancer evades the immune attack. As a result, the DGK field emerges an exciting new area of research with important therapeutic potential.

Listing 1 - 10 of 16 << page
of 2
>>
Sort by