Listing 1 - 10 of 26 | << page >> |
Sort by
|
Choose an application
Fostered by the remarkable progress in the fabrication of nanoparticles and nanostructures, in the last years Surface-Enhanced Raman scattering (SERS) has reached an impressive diffusion in many fields of chemistry and analytical sciences. Several exciting results have been recently reported in SERS-based ultrasensitive detection and molecular imaging. However, more than forty years after its discovery, conventional SERS is still struggling to make its way as a reliable analytical method. The remarkable enhancement of the local electromagnetic field achieved by plasmonic nanostructures is indeed a double-edged sword, as in pushing the sensitivity to the ultimate level, it strongly limits accuracy and reproducibility of the Raman data. In this context, non-plasmonic or hybrid plasmon/dielectric systems are emerging as a promising alternative/complement to conventional SERS. Core/shell systems like T-rex or SHiNERS are only a few examples of these novel SERS-active platforms. In parallel, new theoretical models, based on quantum optomechanical approaches have been recently proposed and developed for describing and predicting plasmonic, non-plasmonic and hybrid (e.g. photo-induced enhanced Raman scattering, PIERS) SERS, also including opto-thermal effects. Moreover, the next-generation of SERS-active materials is facing new challenges in terms of detection strategies, integration with complementary methods and stimuli responsiveness. This Research Topic collects the most recent advances in SERS and related effects, from the viewpoint of theory/models, materials and detection strategies, providing an up-to-date forum for setting the basis for future research in this vibrant field.
SERS (surface enhanced Raman scattering) --- Raman sensing --- SERS theory --- non-plasmonic SERS forensics --- food analysis --- biodiagnostics --- cultural heritage
Choose an application
Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.
pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly --- n/a
Choose an application
Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.
Research & information: general --- pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly
Choose an application
Surface-enhanced Raman scattering (SERS) is a research technique that was discovered in the mid-1970s. SERS is a powerful and fast tool for analysis, which has a high detection sensitivity for a great number of chemical and biological molecules. However, it is in this last decade that a very significant explosion of the fabrication of highly sensitive SERS substrates has occurred using novel designs of plasmonic nanostructures and novel fabrication techniques of the latter, as well as new plasmonic materials and hybrid nanomaterials. Thus, this Special Issue is dedicated to reporting on the latest advances in novel plasmonic nanomaterials that are applied to the SERS domain. These developments are illustrated through several articles and reviews written by researchers in this field from around the world.
Research & information: general --- pulsed laser ablation --- acetonitrile (CH3CN) --- Cu/gCN hybrids --- localized surface plasmon resonance (LSPR) --- surface enhanced Raman scattering (SERS) --- surface enhanced resonance Raman scattering (SERRS) --- silver aggregates --- laser-induced synthesis --- surface-enhanced Raman scattering --- hot spots --- SERS --- sensors --- plasmonics --- gold --- silicon --- surface-enhanced Raman scattering (SERS) --- surface plasmon polariton (SPP) --- surface plasmon resonance (SPR) --- nanograting --- nanofabrication --- electron beam lithography --- zinc oxide --- metal oxides --- self-assembly --- bimetallic nanoparticles --- localized surface plasmon --- surface enhanced Raman scattering --- grating effect --- gold nanodisks --- Rayleigh anomaly --- n/a
Choose an application
Fostered by the remarkable progress in the fabrication of nanoparticles and nanostructures, in the last years Surface-Enhanced Raman scattering (SERS) has reached an impressive diffusion in many fields of chemistry and analytical sciences. Several exciting results have been recently reported in SERS-based ultrasensitive detection and molecular imaging. However, more than forty years after its discovery, conventional SERS is still struggling to make its way as a reliable analytical method. The remarkable enhancement of the local electromagnetic field achieved by plasmonic nanostructures is indeed a double-edged sword, as in pushing the sensitivity to the ultimate level, it strongly limits accuracy and reproducibility of the Raman data. In this context, non-plasmonic or hybrid plasmon/dielectric systems are emerging as a promising alternative/complement to conventional SERS. Core/shell systems like T-rex or SHiNERS are only a few examples of these novel SERS-active platforms. In parallel, new theoretical models, based on quantum optomechanical approaches have been recently proposed and developed for describing and predicting plasmonic, non-plasmonic and hybrid (e.g. photo-induced enhanced Raman scattering, PIERS) SERS, also including opto-thermal effects. Moreover, the next-generation of SERS-active materials is facing new challenges in terms of detection strategies, integration with complementary methods and stimuli responsiveness. This Research Topic collects the most recent advances in SERS and related effects, from the viewpoint of theory/models, materials and detection strategies, providing an up-to-date forum for setting the basis for future research in this vibrant field.
Science: general issues --- SERS (surface enhanced Raman scattering) --- Raman sensing --- SERS theory --- non-plasmonic SERS forensics --- food analysis --- biodiagnostics --- cultural heritage
Choose an application
Fostered by the remarkable progress in the fabrication of nanoparticles and nanostructures, in the last years Surface-Enhanced Raman scattering (SERS) has reached an impressive diffusion in many fields of chemistry and analytical sciences. Several exciting results have been recently reported in SERS-based ultrasensitive detection and molecular imaging. However, more than forty years after its discovery, conventional SERS is still struggling to make its way as a reliable analytical method. The remarkable enhancement of the local electromagnetic field achieved by plasmonic nanostructures is indeed a double-edged sword, as in pushing the sensitivity to the ultimate level, it strongly limits accuracy and reproducibility of the Raman data. In this context, non-plasmonic or hybrid plasmon/dielectric systems are emerging as a promising alternative/complement to conventional SERS. Core/shell systems like T-rex or SHiNERS are only a few examples of these novel SERS-active platforms. In parallel, new theoretical models, based on quantum optomechanical approaches have been recently proposed and developed for describing and predicting plasmonic, non-plasmonic and hybrid (e.g. photo-induced enhanced Raman scattering, PIERS) SERS, also including opto-thermal effects. Moreover, the next-generation of SERS-active materials is facing new challenges in terms of detection strategies, integration with complementary methods and stimuli responsiveness. This Research Topic collects the most recent advances in SERS and related effects, from the viewpoint of theory/models, materials and detection strategies, providing an up-to-date forum for setting the basis for future research in this vibrant field.
Science: general issues --- SERS (surface enhanced Raman scattering) --- Raman sensing --- SERS theory --- non-plasmonic SERS forensics --- food analysis --- biodiagnostics --- cultural heritage
Choose an application
Plasmonics is a rapidly developing field that combines fundamental research and applications ranging from areas such as physics to engineering, chemistry, biology, medicine, food sciences, and the environmental sciences. Plasmonics appeared in the 1950s with the discovery of surface plasmon polaritons. Plasmonics then went through a novel propulsion in the mid-1970s, when surface-enhanced Raman scattering was discovered. Nevertheless, it is in this last decade that a very significant explosion of plasmonics and its applications has occurred. Thus, this book provides a snapshot of the current advances in these various areas of plasmonics and its applications, such as engineering, sensing, surface-enhanced fluorescence, catalysis, and photovoltaic devices.
antenna --- diffractive efficiency --- metal-dielectric resonance --- fuel --- plasmonic molecules --- doping --- catalysis --- sum-frequency generation spectroscopy --- plasmon --- lanthanum hexaboride --- resonance modes --- sum-frequency generation --- enhanced Raman spectroscopy --- nanoparticles --- coupling compensation --- electrochemistry --- multi-channel sensing --- nonlinearity --- optical near-field --- nano-aperture --- nanomaterials --- LaB6 --- metasurfaces --- hybrid --- plasmonics --- SERS --- plasmonic materials --- heat absorption --- biosensing --- solar cell --- metasurface --- AFM-nanomanipulations --- hexaboride --- short circuit current --- non-linear optics --- aluminum --- gold --- lightning rod --- THG --- surface-enhanced fluorescence --- fuel cells --- Ni --- third harmonic generation --- sensing --- interfaces --- spectroelectrochemistry --- surface plasmons --- Perovskites --- hybrid function --- surface-enhanced Raman scattering --- sensors --- silicon --- plasmonic nanoparticles --- quantum efficiency --- surface-enhanced Raman scattering (SERS)
Choose an application
535.375 --- Raman effect, Surface enhanced --- Enhanced Raman scattering --- Surface enhanced Raman effect --- Surface enhanced Raman scattering --- Surface chemistry --- Surfaces (Physics) --- Molecular scattering as quantum effect. Raman effect --- 535.375 Molecular scattering as quantum effect. Raman effect --- Raman effect. --- Adsorption --- Surface (chemistry and physics)
Choose an application
SERS was discovered in the 1970's and has since grown enormously in breadth, depth, and understanding. One of the major characteristics of SERS is its interdisciplinary nature: it lies at the boundary between physics, chemistry, colloid science, plasmonics, nanotechnology, and biology. By their very nature, it is impossible to find a textbook that will summarize the principles needed for SERS of these rather dissimilar and disconnected topics. Although a basic understanding of these topics is necessary for research projects in SERS with all its many aspects and applications, they are seldom...
Raman spectroscopy. --- Raman effect, Surface enhanced. --- Plasmons (Physics) --- Plasma oscillation quanta --- Enhanced Raman scattering --- Surface enhanced Raman effect --- Surface enhanced Raman scattering --- CARS spectroscopy --- Coherent anti-Stokes Raman spectroscopy --- Spectroscopy, Raman --- Exciton theory --- Plasma oscillations --- Plasma waves --- Quasiparticles (Physics) --- Solids --- Surface chemistry --- Surfaces (Physics) --- Spectrum analysis --- Plasma effects --- Raman effect, Surface enhanced --- Raman spectroscopy --- Plasmons (Physics). --- Engineering --- Electronics
Choose an application
SERS for Point-of-care and Clinical Applications focuses on the use of Surface-Enhanced Raman Spectroscopy (also known as Surface-Enhanced Raman Scattering) techniques in clinical and point-of-care settings. Sections provide an overview of SERS biomedical applications, providing in-depth information about point-of-care and clinical applications of SERS using specific examples from current literature. These applications are not always immediately evident to newcomers in the field, as Raman and SERS are often introduced as analytical methods for chemical analysis.
Raman effect, Surface enhanced. --- Biomedical engineering. --- Clinical engineering --- Medical engineering --- Bioengineering --- Biophysics --- Engineering --- Medicine --- Enhanced Raman scattering --- Surface enhanced Raman effect --- Surface enhanced Raman scattering --- Surface chemistry --- Surfaces (Physics) --- Raman, Effet augmenté en surface. --- Génie biomédical. --- Point-of-care testing. --- Clinical medicine. --- Spectrum Analysis, Raman --- Point-of-Care Testing --- Clinical Medicine --- methods --- Spectrum Analysis, Raman. --- Point-of-Care Testing. --- methods.
Listing 1 - 10 of 26 | << page >> |
Sort by
|