Listing 1 - 10 of 11 | << page >> |
Sort by
|
Choose an application
Nitrogen supersaturation --- Nitrogen supersaturation --- Gas bubble disease in fish --- Gas bubble disease in fish --- Salmonidae --- Salmonidae --- Standards --- Standards --- Effect of dams on --- Effect of dams on
Choose an application
Gas bubble disease in fish --- Nitrogen supersaturation --- Gas poisoning --- Water pollution, Chemical --- Congresses. --- Congresses. --- Congresses. --- Congresses.
Choose an application
The use of lipid-based nanosystems, including lipid nanoparticles (solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)), nanoemulsions, and liposomes, among others, is widespread. Several researchers have described the advantages of different applications of these nanosystems. For instance, they can increase the targeting and bioavailability of drugs, improving therapeutic effects. Their use in the cosmetic field is also promising, owing to their moisturizing properties and ability to protect labile cosmetic actives. Thus, it is surprising that only a few lipid-based nanosystems have reached the market. This can be explained by the strict regulatory requirements of medicines and the occurrence of unexpected in vivo failure, which highlights the need to conduct more preclinical studies.Current research is focused on testing the in vitro, ex vivo, and in vivo efficacy of lipid-based nanosystems to predict their clinical performance. However, there is a lack of method validation, which compromises the comparison between different studies.This book brings together the latest research and reviews that report on in vitro, ex vivo, and in vivo preclinical studies using lipid-based nanosystems. Readers can find up-to-date information on the most common experiments performed to predict the clinical behavior of lipid-based nanosystems. A series of 15 research articles and a review are presented, with authors from 15 different countries, which demonstrates the universality of the investigations that have been carried out in this area.
Technology: general issues --- nanostructured lipid carriers (NLC) --- formulation optimization --- rivastigmine --- quality by design (QbD) --- nasal route --- nose-to-brain --- N-alkylisatin --- liposome --- urokinase plasminogen activator --- PAI-2 --- SerpinB2 --- breast cancer --- liposomes --- target delivery nanosystem --- FZD10 protein --- colon cancer therapy --- supersaturation --- silica-lipid hybrid --- spray drying --- lipolysis --- lipid-based formulation --- fenofibrate --- mesoporous silica --- oral drug delivery --- hyaluronic acid --- drug release --- light activation --- stability --- mobility --- biocorona --- dissolution enhancement --- phospholipids --- solid dosage forms --- porous microparticles --- nanoemulsion(s) --- phase-behavior --- DoE --- D-optimal design --- vegetable oils --- non-ionic surfactants --- efavirenz --- flaxseed oil --- nanostructured lipid carriers --- nanocarrier --- docohexaenoic acid --- neuroprotection --- neuroinflammation --- fluconazole --- Box‒Behnken design --- nanotransfersome --- ulcer index --- zone of inhibition --- rheological behavior --- ex vivo permeation --- nanomedicine --- cancer --- doxorubicin --- melanoma --- drug delivery --- ultrasound contrast agents --- phospholipid coating --- ligand distribution --- cholesterol --- acoustic response --- microbubble --- lipid phase --- dialysis --- ammonia --- intoxication --- cyanocobalamin --- vitamin B12 --- atopic dermatitis --- psoriasis --- transferosomes --- lipid vesicles --- skin topical delivery --- oligonucleotide --- self-emulsifying drug delivery systems --- hydrophobic ion pairing --- intestinal permeation enhancers --- Caco-2 monolayer --- clarithromycin --- solid lipid nanoparticles --- optimization --- permeation --- pharmacokinetics --- follicular targeting --- dexamethasone --- alopecia areata --- lipomers --- lipid polymer hybrid nanocapsules --- biodistribution --- skin --- ethyl cellulose --- nanostructured lipid carriers (NLC) --- formulation optimization --- rivastigmine --- quality by design (QbD) --- nasal route --- nose-to-brain --- N-alkylisatin --- liposome --- urokinase plasminogen activator --- PAI-2 --- SerpinB2 --- breast cancer --- liposomes --- target delivery nanosystem --- FZD10 protein --- colon cancer therapy --- supersaturation --- silica-lipid hybrid --- spray drying --- lipolysis --- lipid-based formulation --- fenofibrate --- mesoporous silica --- oral drug delivery --- hyaluronic acid --- drug release --- light activation --- stability --- mobility --- biocorona --- dissolution enhancement --- phospholipids --- solid dosage forms --- porous microparticles --- nanoemulsion(s) --- phase-behavior --- DoE --- D-optimal design --- vegetable oils --- non-ionic surfactants --- efavirenz --- flaxseed oil --- nanostructured lipid carriers --- nanocarrier --- docohexaenoic acid --- neuroprotection --- neuroinflammation --- fluconazole --- Box‒Behnken design --- nanotransfersome --- ulcer index --- zone of inhibition --- rheological behavior --- ex vivo permeation --- nanomedicine --- cancer --- doxorubicin --- melanoma --- drug delivery --- ultrasound contrast agents --- phospholipid coating --- ligand distribution --- cholesterol --- acoustic response --- microbubble --- lipid phase --- dialysis --- ammonia --- intoxication --- cyanocobalamin --- vitamin B12 --- atopic dermatitis --- psoriasis --- transferosomes --- lipid vesicles --- skin topical delivery --- oligonucleotide --- self-emulsifying drug delivery systems --- hydrophobic ion pairing --- intestinal permeation enhancers --- Caco-2 monolayer --- clarithromycin --- solid lipid nanoparticles --- optimization --- permeation --- pharmacokinetics --- follicular targeting --- dexamethasone --- alopecia areata --- lipomers --- lipid polymer hybrid nanocapsules --- biodistribution --- skin --- ethyl cellulose
Choose an application
This Special Issue is a collection of high-quality reviews and original papers from editorial board members, guest editors, and leading researchers discussing new knowledge or new cutting-edge developments in the field of engineering.
Technology: general issues --- hydrofoil optimization --- NSGA-II --- CFD --- XFOIL --- NACA 63815 --- bezier curve --- ultrasound application --- glass bottles --- fruit juice --- foam drainage --- foaming behavior --- martensitic phase transformation (MPT) --- grain misorientation (GMO) --- surface roughening (Ra) --- grain size (Dg) --- solid oxide fuel cell --- computational fluid dynamics --- sensitivity analysis --- optimization --- sand retention test --- sand control devices --- sand production --- sand replication --- SAGD --- probabilistic risk assessment --- multi-hazards --- nuclear safety --- dry-cured ham --- food-grade chemical --- coating --- mechanical performance characteristics --- chemical treatment --- ham nets --- pest management --- mechanical test --- mesh fabric --- artificial magnetic conductor (AMC) --- specific absorption rate (SAR) --- coplanar waveguide (CPW) antenna --- magneto-dielectric (MD) --- mobile phones --- wireless communications --- optical multi-band systems --- physical layer modeling --- fiber-optic communications --- commercially available components --- planar transformer --- eco-design --- environmental impact evaluation --- product efficiency --- DC-DC converter --- dual active bridge (DAB) --- life cycle optimization --- fuel optimization --- low cost HEV --- optimum hybridization --- bubble nucleation --- gas-liquid systems --- supersaturation --- step-down pressure --- Fick's second law diffusion --- characteristic time --- Q factor --- damping model --- transitional flow regime --- viscous flow regime --- MEMS oscillator --- bending modes --- zirconium phosphate --- titanium phosphate --- nanolayered phosphates --- nanofibrous titanium phosphate --- chemical synthesis --- crystal structure --- technological applications --- drug delivery --- biomedical applications --- hydrofoil optimization --- NSGA-II --- CFD --- XFOIL --- NACA 63815 --- bezier curve --- ultrasound application --- glass bottles --- fruit juice --- foam drainage --- foaming behavior --- martensitic phase transformation (MPT) --- grain misorientation (GMO) --- surface roughening (Ra) --- grain size (Dg) --- solid oxide fuel cell --- computational fluid dynamics --- sensitivity analysis --- optimization --- sand retention test --- sand control devices --- sand production --- sand replication --- SAGD --- probabilistic risk assessment --- multi-hazards --- nuclear safety --- dry-cured ham --- food-grade chemical --- coating --- mechanical performance characteristics --- chemical treatment --- ham nets --- pest management --- mechanical test --- mesh fabric --- artificial magnetic conductor (AMC) --- specific absorption rate (SAR) --- coplanar waveguide (CPW) antenna --- magneto-dielectric (MD) --- mobile phones --- wireless communications --- optical multi-band systems --- physical layer modeling --- fiber-optic communications --- commercially available components --- planar transformer --- eco-design --- environmental impact evaluation --- product efficiency --- DC-DC converter --- dual active bridge (DAB) --- life cycle optimization --- fuel optimization --- low cost HEV --- optimum hybridization --- bubble nucleation --- gas-liquid systems --- supersaturation --- step-down pressure --- Fick's second law diffusion --- characteristic time --- Q factor --- damping model --- transitional flow regime --- viscous flow regime --- MEMS oscillator --- bending modes --- zirconium phosphate --- titanium phosphate --- nanolayered phosphates --- nanofibrous titanium phosphate --- chemical synthesis --- crystal structure --- technological applications --- drug delivery --- biomedical applications
Choose an application
For at least six hundred million years, life has been a fascinating laboratory of crystallization, referred to as biomineralization. During this huge lapse of time, many organisms from diverse phyla have developed the capability to precipitate various types of minerals, exploring distinctive pathways for building sophisticated structural architectures for different purposes. The Darwinian exploration was performed by trial and error, but the success in terms of complexity and efficiency is evident. Understanding the strategies that those organisms employ for regulating the nucleation, growth, and assembly of nanocrystals to build these sophisticated devices is an intellectual challenge and a source of inspiration in fields as diverse as materials science, nanotechnology, and biomedicine. However, “Biological Crystallization” is a broader topic that includes biomineralization, but also the laboratory crystallization of biological compounds such as macromolecules, carbohydrates, or lipids, and the synthesis and fabrication of biomimetic materials by different routes. This Special Issue collects 15 contributions ranging from biological and biomimetic crystallization of calcium carbonate, calcium phosphate, and silica-carbonate self-assembled materials to the crystallization of biological macromolecules. Special attention has been paid to the fundamental phenomena of crystallization (nucleation and growth), and the applications of the crystals in biomedicine, environment, and materials science.
chitosan --- Csep1p --- bond selection during protein crystallization --- bioremediation --- education --- reductants --- heavy metals --- biomimetic crystallization --- MTT assay --- protein crystallization --- drug discovery --- optimization --- polymyxin resistance --- lysozyme --- ependymin-related protein (EPDR) --- equilibration between crystal bond and destructive energies --- barium carbonate --- dyes --- microseed matrix screening --- nanoapatites --- colistin resistance --- Haloalkane dehalogenase --- diffusion --- polyacrylic acid --- random microseeding --- protein ‘affinity’ to water --- insulin --- protein crystal nucleation --- agarose --- lithium ions --- ependymin (EPN) --- {00.1} calcite --- seeding --- Campylobacter consisus --- metallothioneins --- Crohn’s disease --- balance between crystal bond energy and destructive surface energies --- color change --- microbially induced calcite precipitation (MICP) --- crystallization of macromolecules --- crystallization --- calcein --- MCR-1 --- Cry protein crystals --- L-tryptophan --- circular dichroism --- crystal violet --- nanocomposites --- halide-binding site --- calcium carbonate --- PCDA --- ultrasonic irradiation --- adsorption --- biochemical aspects of the protein crystal nucleation --- GTL-16 cells --- proteinase k --- neutron protein crystallography --- classical and two-step crystal nucleation mechanisms --- thermodynamic and energetic approach --- heavy metal contamination --- N-acetyl-D-glucosamine --- crystallization in solution flow --- solubility --- biomorphs --- droplet array --- biomimetic materials --- ferritin --- biomineralization --- wastewater treatment --- H3O+ --- silica --- graphene --- supersaturation dependence of the crystal nucleus size --- pyrrole --- micro-crystals --- nucleation --- crystallography --- mammalian ependymin-related protein (MERP) --- high-throughput --- vaterite transformation --- gradients --- materials science --- bioprecipitation --- biomedicine --- human carbonic anhydrase IX --- protein crystal nucleation in pores --- growth --- crystal growth
Choose an application
Micro manufacturing involves dealing with the fabrication of structures in the size range of 0.1 to 1000 µm. The scope of nano manufacturing extends the size range of manufactured features to even smaller length scales—below 100 nm. A strict borderline between micro and nano manufacturing can hardly be drawn, such that both domains are treated as complementary and mutually beneficial within a closely interconnected scientific community. Both micro and nano manufacturing can be considered as important enablers for high-end products. This Special Issue of Applied Sciences is dedicated to recent advances in research and development within the field of micro and nano manufacturing. The included papers report recent findings and advances in manufacturing technologies for producing products with micro and nano scale features and structures as well as applications underpinned by the advances in these technologies.
path adaptability --- uncertainty quantification --- hardening --- empirical mode decomposition --- microlens array mold --- gaussian process modeling --- multi-objective particle swarm optimization --- micro reactors --- XRD --- surface roughness --- water impermeability tests --- nanocone array --- additive manufacturing --- antireflection nanostructure --- ultraprecision machining --- Surface-enhanced Raman scattering --- micro stereolithography --- optical encoder --- micro assembly --- micro-optics --- nanosphere array --- micro-assembly --- injection molding --- Portland limestone ternary fiber–cement nanohybrids --- hot embossing --- deterministic polishing --- micro-lens array --- process parameter optimization --- TGA/dTG --- intrinsic mode function --- micro factories --- three-dimensional elliptical vibration cutting --- flow control --- micro-EDM molds --- Image segmentation --- micro actuators --- culture dish adapter --- flexural strength --- SERS --- low PC clinker --- MIP --- selective laser melting --- micro sensors --- friction coefficient --- design of experiments --- Ti6Al4V --- micro-spring --- contactless embossing --- micro and nano additive manufacturing --- Taguchi’s method --- nanoimprinting --- perfusion culture --- micro and nano manufacturing --- data structure --- fluid jet polishing --- nitrogen supersaturation --- spatial uncertainty modeling --- active alignment --- variable pitch path --- conceptual design --- feature extraction --- blaze --- micro-nozzle --- product development --- opto-ASIC --- wafer-level optics --- residual error optimization --- stiffness control --- surface engineering and interface nanotechnology --- design for manufacturability --- anodic aluminum oxide --- plasma nitriding --- micro 3D printing --- hydrophobicity --- grating --- micro-fluidics --- closed environment --- chatter identification --- small recess structure
Choose an application
"Despite substantial, cross-disciplinary interest in the subject as a scientific case study, surprisingly little has been written on the science of snowflakes and their formation. For materials scientists, snowflakes constitute archetypal examples of crystal growth; for chemists, the site of complex molecular dynamics at the ice surface. Physicists can learn from snowflake symmetry and self-assembly; geologists study snow as mineral crystals; and biologists can even gain insight into the creation of shape and order in organisms. In the humble snowflake are condensed many of the processes-many of them still not fully understood-that govern the organization of classical systems at all levels of the natural world. This book by Kenneth Libbrecht-inarguably the world's foremost expert on the subject-will be the authoritative text on the science of snow crystals. It will cover all of the physical processes that govern the life of a snowflake, including how snowflakes grow and why they have the shapes they do. It will also outline techniques for creating and experimenting with snow crystals, both with computer models and in the lab. Featuring hundreds of color illustrations, the book will be comprehensive and is sure to become definitive resource for researchers for years, if not decades, to come"--
Snowflakes. --- Flakes, Snow --- Snow crystals --- Snow flakes --- Snow --- Accuracy and precision. --- Artistic rendering. --- Atmospheric pressure. --- Atmospheric sciences. --- Attic calendar. --- Baking. --- Biomolecule. --- Blood Glucose. --- Branching (polymer chemistry). --- By-product. --- Camera. --- Camphor. --- Canon EOS 5D. --- Chemical bond. --- Chemical formula. --- Chisel. --- Circumference. --- Clear ice. --- Cloud. --- Coefficient. --- Collision. --- Computational chemistry. --- Computational model. --- Consumer. --- Crystal growth. --- Crystal structure. --- Crystal. --- Cubic crystal system. --- Curvature. --- Cytokine. --- Deforestation. --- Desiccation. --- Dew point. --- Diagram. --- Diffusion equation. --- Dimension. --- Dislocation. --- Drop (liquid). --- Economic development. --- Facet (geometry). --- Faceting. --- Field lens. --- Focus stacking. --- Freedman. --- Glucocorticoid. --- Glycoside. --- Hatchling. --- Heat exchanger. --- Hydrogen atom. --- Ice Ih. --- Ice. --- Implementation. --- Impurity. --- Isotropy. --- Latent heat. --- Lighting. --- Liquid crystal. --- Menopause. --- Micrograph. --- Mitutoyo. --- Molecule. --- Neglect. --- Nematode. --- Nomenclature. --- Nucleation. --- Parabola. --- Parasitoid. --- Pedagogy. --- Percentage. --- Petite bourgeoisie. --- Phase (matter). --- Pixel. --- Planned economy. --- Plate column. --- Properties of water. --- Public sector. --- Quadratic equation. --- Refractive index. --- Result. --- Scientific method. --- Snow. --- Southwestern United States. --- Sovereignty. --- Stabilization policy. --- Stagnation point. --- State management. --- Steradian. --- Stokes' law. --- Storage tank. --- Stunted growth. --- Supersaturation. --- Surface diffusion. --- Surface energy. --- Surface roughness. --- Temperature gradient. --- Temperature. --- Video production. --- Visual effects. --- Website. --- Zero of a function. --- Snowflakes
Choose an application
This Special Issue is a collection of high-quality reviews and original papers from editorial board members, guest editors, and leading researchers discussing new knowledge or new cutting-edge developments in the field of engineering.
Technology: general issues --- hydrofoil optimization --- NSGA-II --- CFD --- XFOIL --- NACA 63815 --- bezier curve --- ultrasound application --- glass bottles --- fruit juice --- foam drainage --- foaming behavior --- martensitic phase transformation (MPT) --- grain misorientation (GMO) --- surface roughening (Ra) --- grain size (Dg) --- solid oxide fuel cell --- computational fluid dynamics --- sensitivity analysis --- optimization --- sand retention test --- sand control devices --- sand production --- sand replication --- SAGD --- probabilistic risk assessment --- multi-hazards --- nuclear safety --- dry-cured ham --- food-grade chemical --- coating --- mechanical performance characteristics --- chemical treatment --- ham nets --- pest management --- mechanical test --- mesh fabric --- artificial magnetic conductor (AMC) --- specific absorption rate (SAR) --- coplanar waveguide (CPW) antenna --- magneto-dielectric (MD) --- mobile phones --- wireless communications --- optical multi-band systems --- physical layer modeling --- fiber-optic communications --- commercially available components --- planar transformer --- eco-design --- environmental impact evaluation --- product efficiency --- DC-DC converter --- dual active bridge (DAB) --- life cycle optimization --- fuel optimization --- low cost HEV --- optimum hybridization --- bubble nucleation --- gas-liquid systems --- supersaturation --- step-down pressure --- Fick’s second law diffusion --- characteristic time --- Q factor --- damping model --- transitional flow regime --- viscous flow regime --- MEMS oscillator --- bending modes --- zirconium phosphate --- titanium phosphate --- nanolayered phosphates --- nanofibrous titanium phosphate --- chemical synthesis --- crystal structure --- technological applications --- drug delivery --- biomedical applications --- n/a --- Fick's second law diffusion
Choose an application
The use of lipid-based nanosystems, including lipid nanoparticles (solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)), nanoemulsions, and liposomes, among others, is widespread. Several researchers have described the advantages of different applications of these nanosystems. For instance, they can increase the targeting and bioavailability of drugs, improving therapeutic effects. Their use in the cosmetic field is also promising, owing to their moisturizing properties and ability to protect labile cosmetic actives. Thus, it is surprising that only a few lipid-based nanosystems have reached the market. This can be explained by the strict regulatory requirements of medicines and the occurrence of unexpected in vivo failure, which highlights the need to conduct more preclinical studies.Current research is focused on testing the in vitro, ex vivo, and in vivo efficacy of lipid-based nanosystems to predict their clinical performance. However, there is a lack of method validation, which compromises the comparison between different studies.This book brings together the latest research and reviews that report on in vitro, ex vivo, and in vivo preclinical studies using lipid-based nanosystems. Readers can find up-to-date information on the most common experiments performed to predict the clinical behavior of lipid-based nanosystems. A series of 15 research articles and a review are presented, with authors from 15 different countries, which demonstrates the universality of the investigations that have been carried out in this area.
Technology: general issues --- nanostructured lipid carriers (NLC) --- formulation optimization --- rivastigmine --- quality by design (QbD) --- nasal route --- nose-to-brain --- N-alkylisatin --- liposome --- urokinase plasminogen activator --- PAI-2 --- SerpinB2 --- breast cancer --- liposomes --- target delivery nanosystem --- FZD10 protein --- colon cancer therapy --- supersaturation --- silica-lipid hybrid --- spray drying --- lipolysis --- lipid-based formulation --- fenofibrate --- mesoporous silica --- oral drug delivery --- hyaluronic acid --- drug release --- light activation --- stability --- mobility --- biocorona --- dissolution enhancement --- phospholipids --- solid dosage forms --- porous microparticles --- nanoemulsion(s) --- phase-behavior --- DoE --- D-optimal design --- vegetable oils --- non-ionic surfactants --- efavirenz --- flaxseed oil --- nanostructured lipid carriers --- nanocarrier --- docohexaenoic acid --- neuroprotection --- neuroinflammation --- fluconazole --- Box‒Behnken design --- nanotransfersome --- ulcer index --- zone of inhibition --- rheological behavior --- ex vivo permeation --- nanomedicine --- cancer --- doxorubicin --- melanoma --- drug delivery --- ultrasound contrast agents --- phospholipid coating --- ligand distribution --- cholesterol --- acoustic response --- microbubble --- lipid phase --- dialysis --- ammonia --- intoxication --- cyanocobalamin --- vitamin B12 --- atopic dermatitis --- psoriasis --- transferosomes --- lipid vesicles --- skin topical delivery --- oligonucleotide --- self-emulsifying drug delivery systems --- hydrophobic ion pairing --- intestinal permeation enhancers --- Caco-2 monolayer --- clarithromycin --- solid lipid nanoparticles --- optimization --- permeation --- pharmacokinetics --- follicular targeting --- dexamethasone --- alopecia areata --- lipomers --- lipid polymer hybrid nanocapsules --- biodistribution --- skin --- ethyl cellulose --- n/a
Choose an application
The use of lipid-based nanosystems, including lipid nanoparticles (solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC)), nanoemulsions, and liposomes, among others, is widespread. Several researchers have described the advantages of different applications of these nanosystems. For instance, they can increase the targeting and bioavailability of drugs, improving therapeutic effects. Their use in the cosmetic field is also promising, owing to their moisturizing properties and ability to protect labile cosmetic actives. Thus, it is surprising that only a few lipid-based nanosystems have reached the market. This can be explained by the strict regulatory requirements of medicines and the occurrence of unexpected in vivo failure, which highlights the need to conduct more preclinical studies.Current research is focused on testing the in vitro, ex vivo, and in vivo efficacy of lipid-based nanosystems to predict their clinical performance. However, there is a lack of method validation, which compromises the comparison between different studies.This book brings together the latest research and reviews that report on in vitro, ex vivo, and in vivo preclinical studies using lipid-based nanosystems. Readers can find up-to-date information on the most common experiments performed to predict the clinical behavior of lipid-based nanosystems. A series of 15 research articles and a review are presented, with authors from 15 different countries, which demonstrates the universality of the investigations that have been carried out in this area.
nanostructured lipid carriers (NLC) --- formulation optimization --- rivastigmine --- quality by design (QbD) --- nasal route --- nose-to-brain --- N-alkylisatin --- liposome --- urokinase plasminogen activator --- PAI-2 --- SerpinB2 --- breast cancer --- liposomes --- target delivery nanosystem --- FZD10 protein --- colon cancer therapy --- supersaturation --- silica-lipid hybrid --- spray drying --- lipolysis --- lipid-based formulation --- fenofibrate --- mesoporous silica --- oral drug delivery --- hyaluronic acid --- drug release --- light activation --- stability --- mobility --- biocorona --- dissolution enhancement --- phospholipids --- solid dosage forms --- porous microparticles --- nanoemulsion(s) --- phase-behavior --- DoE --- D-optimal design --- vegetable oils --- non-ionic surfactants --- efavirenz --- flaxseed oil --- nanostructured lipid carriers --- nanocarrier --- docohexaenoic acid --- neuroprotection --- neuroinflammation --- fluconazole --- Box‒Behnken design --- nanotransfersome --- ulcer index --- zone of inhibition --- rheological behavior --- ex vivo permeation --- nanomedicine --- cancer --- doxorubicin --- melanoma --- drug delivery --- ultrasound contrast agents --- phospholipid coating --- ligand distribution --- cholesterol --- acoustic response --- microbubble --- lipid phase --- dialysis --- ammonia --- intoxication --- cyanocobalamin --- vitamin B12 --- atopic dermatitis --- psoriasis --- transferosomes --- lipid vesicles --- skin topical delivery --- oligonucleotide --- self-emulsifying drug delivery systems --- hydrophobic ion pairing --- intestinal permeation enhancers --- Caco-2 monolayer --- clarithromycin --- solid lipid nanoparticles --- optimization --- permeation --- pharmacokinetics --- follicular targeting --- dexamethasone --- alopecia areata --- lipomers --- lipid polymer hybrid nanocapsules --- biodistribution --- skin --- ethyl cellulose --- n/a
Listing 1 - 10 of 11 | << page >> |
Sort by
|