Listing 1 - 10 of 37 | << page >> |
Sort by
|
Choose an application
The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Itô and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations.
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
Stochastic partial differential equations can be used in many areas of science to model complex systems that evolve over time. Their analysis is currently an area of much research interest. This book consists of papers given at the ICMS Edinburgh meeting held in 1994 on this topic, and it brings together some of the world's best known authorities on stochastic partial differential equations. Subjects covered include the stochastic Navier-Stokes equation, critical branching systems, population models, statistical dynamics, and ergodic properties of Markov semigroups. For all workers on stochastic partial differential equations this book will have much to offer.
Stochastic partial differential equations --- Differential equations, Partial --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces
Choose an application
Rigorous error estimates for amplitude equations are well known for deterministic PDEs, and there is a large body of literature over the past two decades. However, there seems to be a lack of literature for stochastic equations, although the theory is being successfully used in the applied community, such as for convective instabilities, without reliable error estimates at hand. This book is the first step in closing this gap. The author provides details about the reduction of dynamics to more simpler equations via amplitude or modulation equations, which relies on the natural separation of ti
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
The study of measure-valued processes in random environments has seen some intensive research activities in recent years whereby interesting nonlinear stochastic partial differential equations (SPDEs) were derived. Due to the nonlinearity and the non-Lipschitz continuity of their coefficients, new techniques and concepts have recently been developed for the study of such SPDEs. These include the conditional Laplace transform technique, the conditional mild solution, and the bridge between SPDEs and some kind of backward stochastic differential equations. This volume provides an introduction to
Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Differential equations, Nonlinear.
Choose an application
Stochastic processes --- Partial differential equations --- Heat equation --- Stochastic partial differential equations --- Filters (Mathematics) --- Équation de la chaleur. --- Équations aux dérivées partielles stochastiques. --- Filtres (mathématiques) --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Diffusion equation --- Heat flow equation --- Differential equations, Parabolic --- Mathematics
Choose an application
Filling the void of an introductory text in the field, this book highlights several computational and analytical techniques involved in stochastic PDEs. It includes many challenging problems in stochastic analysis and treats stochastic PDEs in a practical way. The author first brings the subject back to its root in classical concrete problems. He then discusses a unified theory of stochastic evolution equations and describes a few applied problems, including the random vibration of a nonlinear elastic beam and invariant measures for stochastic Navier-Stokes equations. The book concludes by pointing out the connection of stochastic PDEs to infinite-dimensional stochastic analysis.
Stochastic partial differential equations. --- Équations aux dérivées partielles stochastiques --- 519.21 --- PDE (partial differential equations) --- waarschijnlijkheidsrekening --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- waarschijnlijkheidsrekening. Stochastische processen --- Équations aux dérivées partielles stochastiques --- Stochastic partial differential equations
Choose an application
Ornstein-Uhlenbeck process --- Stochastic partial differential equations --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Brownian motion processes --- Gaussian processes --- Stationary processes
Choose an application
Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The b
Differential equations. --- Mathematics. --- Stochastic partial differential equations. --- Stochastic partial differential equations --- Mathematics --- Physical Sciences & Mathematics --- Mathematical Statistics --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial
Choose an application
This book explains mathematical theories of a collection of stochastic partial differential equations and their dynamical behaviors. Based on probability and stochastic process, the authors discuss stochastic integrals, Ito formula and Ornstein-Uhlenbeck processes, and introduce theoretical framework for random attractors. With rigorous mathematical deduction, the book is an essential reference to mathematicians and physicists in nonlinear science. Contents:PreliminariesThe stochastic integral and Itô formulaOU processes and SDEsRandom attractorsApplicationsBibliographyIndex
Stochastic partial differential equations. --- Dynamics. --- Dynamical systems --- Kinetics --- Mathematics --- Mechanics, Analytic --- Force and energy --- Mechanics --- Physics --- Statics --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Itô's formula. --- Ornstein-Uhlenbeck processes. --- Stochastic PDEs. --- dynamical behavior. --- random attractors. --- stochastic integrals.
Choose an application
Stochastic partial differential equations --- Stochastic partial differential equations. --- Banach spaces, Stochastic differential equations in --- Hilbert spaces, Stochastic differential equations in --- SPDE (Differential equations) --- Stochastic differential equations in Banach spaces --- Stochastic differential equations in Hilbert spaces --- Differential equations, Partial --- Mathematical Statistics --- Équations aux dérivées partielles stochastiques --- Anàlisi estocàstica --- Equacions en derivades parcials
Listing 1 - 10 of 37 | << page >> |
Sort by
|