Narrow your search

Library

KU Leuven (4)

UAntwerpen (3)

VUB (3)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

UHasselt (2)

VIVES (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2013 (1)

2006 (1)

1993 (1)

1985 (1)

1970 (1)

Listing 1 - 5 of 5
Sort by

Book
Impulsive differential inclusions : a fixed point approach
Authors: --- ---
ISBN: 3110295318 9783110295313 9783110293616 3110293617 Year: 2013 Volume: 20 Publisher: Berlin ; Boston : Walter de Gruyter GmbH & Co., KG,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Differential equations with impulses arise as models of many evolving processes that are subject to abrupt changes, such as shocks, harvesting, and natural disasters. These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume these perturbations act instantaneously or in the form of impulses. As a consequence, impulsive differential equations have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial robotics, pharmacokinetics, optimal control, and so forth. There are also many different studies in biology and medicine for which impulsive differential equations provide good models. During the last 10 years, the authors have been responsible for extensive contributions to the literature on impulsive differential inclusions via fixed point methods. This book is motivated by that research as the authors endeavor to bring under one cover much of those results along with results by other researchers either affecting or affected by the authors' work. The questions of existence and stability of solutions for different classes of initial value problems for impulsive differential equations and inclusions with fixed and variable moments are considered in detail. Attention is also given to boundary value problems. In addition, since differential equations can be viewed as special cases of differential inclusions, significant attention is also given to relative questions concerning differential equations. This monograph addresses a variety of side issues that arise from its simpler beginnings as well.

Functional integration and partial differential equations
Author:
ISBN: 0691083541 1400881595 Year: 1985 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.

Keywords

Partial differential equations --- Differential equations, Partial. --- Probabilities. --- Integration, Functional. --- Functional integration --- Functional analysis --- Integrals, Generalized --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk --- A priori estimate. --- Absolute continuity. --- Almost surely. --- Analytic continuation. --- Axiom. --- Big O notation. --- Boundary (topology). --- Boundary value problem. --- Bounded function. --- Calculation. --- Cauchy problem. --- Central limit theorem. --- Characteristic function (probability theory). --- Chebyshev's inequality. --- Coefficient. --- Comparison theorem. --- Continuous function (set theory). --- Continuous function. --- Convergence of random variables. --- Cylinder set. --- Degeneracy (mathematics). --- Derivative. --- Differential equation. --- Differential operator. --- Diffusion equation. --- Diffusion process. --- Dimension (vector space). --- Direct method in the calculus of variations. --- Dirichlet boundary condition. --- Dirichlet problem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Existence theorem. --- Exponential function. --- Feynman–Kac formula. --- Fokker–Planck equation. --- Function space. --- Functional analysis. --- Fundamental solution. --- Gaussian measure. --- Girsanov theorem. --- Hessian matrix. --- Hölder condition. --- Independence (probability theory). --- Integral curve. --- Integral equation. --- Invariant measure. --- Iterated logarithm. --- Itô's lemma. --- Joint probability distribution. --- Laplace operator. --- Laplace's equation. --- Lebesgue measure. --- Limit (mathematics). --- Limit cycle. --- Limit point. --- Linear differential equation. --- Linear map. --- Lipschitz continuity. --- Markov chain. --- Markov process. --- Markov property. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Moment (mathematics). --- Monotonic function. --- Navier–Stokes equations. --- Nonlinear system. --- Ordinary differential equation. --- Parameter. --- Partial differential equation. --- Periodic function. --- Poisson kernel. --- Probabilistic method. --- Probability space. --- Probability theory. --- Probability. --- Random function. --- Regularization (mathematics). --- Schrödinger equation. --- Self-adjoint operator. --- Sign (mathematics). --- Simultaneous equations. --- Smoothness. --- State-space representation. --- Stochastic calculus. --- Stochastic differential equation. --- Stochastic. --- Support (mathematics). --- Theorem. --- Theory. --- Uniqueness theorem. --- Variable (mathematics). --- Weak convergence (Hilbert space). --- Wiener process.

Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
Authors: ---
ISBN: 0691032165 140088392X 9780691032160 Year: 1993 Volume: 43 Publisher: Princeton (N.J.): Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, Lsup estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.

Keywords

Harmonic analysis. Fourier analysis --- Harmonic analysis --- Analyse harmonique --- Harmonic analysis. --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Groupe de Heisenberg. --- Addition. --- Analytic function. --- Asymptote. --- Asymptotic analysis. --- Asymptotic expansion. --- Asymptotic formula. --- Automorphism. --- Axiom. --- Banach space. --- Bessel function. --- Big O notation. --- Bilinear form. --- Borel measure. --- Boundary value problem. --- Bounded function. --- Bounded mean oscillation. --- Bounded operator. --- Boundedness. --- Cancellation property. --- Cauchy's integral theorem. --- Cauchy–Riemann equations. --- Characteristic polynomial. --- Characterization (mathematics). --- Commutative property. --- Commutator. --- Complex analysis. --- Convolution. --- Differential equation. --- Differential operator. --- Dimension (vector space). --- Dimension. --- Dirac delta function. --- Dirichlet problem. --- Elliptic operator. --- Existential quantification. --- Fatou's theorem. --- Fourier analysis. --- Fourier integral operator. --- Fourier inversion theorem. --- Fourier series. --- Fourier transform. --- Fubini's theorem. --- Function (mathematics). --- Fundamental solution. --- Gaussian curvature. --- Hardy space. --- Harmonic function. --- Heisenberg group. --- Hilbert space. --- Hilbert transform. --- Holomorphic function. --- Hölder's inequality. --- Infimum and supremum. --- Integral transform. --- Interpolation theorem. --- Lagrangian (field theory). --- Laplace's equation. --- Lebesgue measure. --- Lie algebra. --- Line segment. --- Linear map. --- Lipschitz continuity. --- Locally integrable function. --- Marcinkiewicz interpolation theorem. --- Martingale (probability theory). --- Mathematical induction. --- Maximal function. --- Meromorphic function. --- Multiplication operator. --- Nilpotent Lie algebra. --- Norm (mathematics). --- Number theory. --- Operator theory. --- Order of integration (calculus). --- Orthogonality. --- Oscillatory integral. --- Poisson summation formula. --- Projection (linear algebra). --- Pseudo-differential operator. --- Pseudoconvexity. --- Rectangle. --- Riesz transform. --- Several complex variables. --- Sign (mathematics). --- Singular integral. --- Sobolev space. --- Special case. --- Spectral theory. --- Square (algebra). --- Stochastic differential equation. --- Subharmonic function. --- Submanifold. --- Summation. --- Support (mathematics). --- Theorem. --- Translational symmetry. --- Uniqueness theorem. --- Variable (mathematics). --- Vector field. --- Fourier, Analyse de --- Fourier, Opérateurs intégraux de


Book
Stationary stochastic processes
Author:
ISBN: 0691080747 1322884773 0691621411 0691648077 1400868572 9780691080741 Year: 1970 Publisher: Princeton: Princeton university press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Encompassing both introductory and more advanced research material, these notes deal with the author's contributions to stochastic processes and focus on Brownian motion processes and its derivative white noise.Originally published in 1970.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Stationary processes --- Stationary processes. --- Stochastic processes --- 519.216 --- 519.216 Stochastic processes in general. Prediction theory. Stopping times. Martingales --- Stochastic processes in general. Prediction theory. Stopping times. Martingales --- Bochner integral. --- Bochner's theorem. --- Bounded operator. --- Bounded variation. --- Brownian motion. --- Characteristic exponent. --- Characteristic function (probability theory). --- Complexification. --- Compound Poisson process. --- Computation. --- Conditional expectation. --- Continuous function (set theory). --- Continuous function. --- Continuous linear operator. --- Convergence of random variables. --- Coset. --- Covariance function. --- Cyclic subspace. --- Cylinder set. --- Degrees of freedom (statistics). --- Derivative. --- Differential equation. --- Dimension (vector space). --- Dirac delta function. --- Discrete spectrum. --- Distribution function. --- Dual space. --- Eigenfunction. --- Equation. --- Existential quantification. --- Exponential distribution. --- Exponential function. --- Finite difference. --- Fourier series. --- Fourier transform. --- Function (mathematics). --- Function space. --- Gaussian measure. --- Gaussian process. --- Harmonic analysis. --- Hermite polynomials. --- Hilbert space. --- Homeomorphism. --- Independence (probability theory). --- Independent and identically distributed random variables. --- Indicator function. --- Infinitesimal generator (stochastic processes). --- Integral equation. --- Isometry. --- Joint probability distribution. --- Langevin equation. --- Lebesgue measure. --- Lie algebra. --- Limit superior and limit inferior. --- Linear combination. --- Linear function. --- Linear interpolation. --- Linear subspace. --- Mean squared error. --- Measure (mathematics). --- Monotonic function. --- Normal distribution. --- Normal subgroup. --- Nuclear space. --- One-parameter group. --- Orthogonality. --- Orthogonalization. --- Parameter. --- Poisson point process. --- Polynomial. --- Probability distribution. --- Probability measure. --- Probability space. --- Probability. --- Projective linear group. --- Radon–Nikodym theorem. --- Random function. --- Random variable. --- Reproducing kernel Hilbert space. --- Self-adjoint operator. --- Self-adjoint. --- Semigroup. --- Shift operator. --- Special case. --- Stable process. --- Stationary process. --- Stochastic differential equation. --- Stochastic process. --- Stochastic. --- Subgroup. --- Summation. --- Symmetrization. --- Theorem. --- Transformation semigroup. --- Unitary operator. --- Unitary representation. --- Unitary transformation. --- Variance. --- White noise. --- Zero element.


Book
Diffusion, quantum theory, and radically elementary mathematics
Author:
ISBN: 1400865255 9781400865253 Year: 2006 Publisher: Princeton, New Jersey ; Oxfordshire, England : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein's work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book's inspiration is Princeton University mathematics professor Edward Nelson's influential work in probability, functional analysis, nonstandard analysis, stochastic mechanics, and logic. The book can be used as a tutorial or reference, or read for pleasure by anyone interested in the role of mathematics in science. Because of the application of diffusive motion to quantum theory, it will interest physicists as well as mathematicians. The introductory chapter describes the interrelationships between the various themes, many of which were first brought to light by Edward Nelson. In his writing and conversation, Nelson has always emphasized and relished the human aspect of mathematical endeavor. In his intellectual world, there is no sharp boundary between the mathematical, the cultural, and the spiritual. It is fitting that the final chapter provides a mathematical perspective on musical theory, one that reveals an unexpected connection with some of the book's main themes.

Keywords

Mathematical physics. --- Diffusion. --- Quantum theory. --- Quantum dynamics --- Quantum mechanics --- Quantum physics --- Physics --- Mechanics --- Thermodynamics --- Gases --- Liquids --- Separation (Technology) --- Solution (Chemistry) --- Solutions, Solid --- Matter --- Packed towers --- Semiconductor doping --- Physical mathematics --- Diffusion --- Properties --- Mathematics --- Affine space. --- Algebra. --- Axiom. --- Bell's theorem. --- Brownian motion. --- Central limit theorem. --- Classical mathematics. --- Classical mechanics. --- Clifford algebra. --- Combinatorial proof. --- Commutative property. --- Constructive quantum field theory. --- Continuum hypothesis. --- David Hilbert. --- Dimension (vector space). --- Discrete mathematics. --- Distribution (mathematics). --- Eigenfunction. --- Equation. --- Euclidean space. --- Experimental mathematics. --- Fermi–Dirac statistics. --- Feynman–Kac formula. --- First-order logic. --- Fokker–Planck equation. --- Foundations of mathematics. --- Fractal dimension. --- Gaussian process. --- Girsanov theorem. --- Gödel's incompleteness theorems. --- Hilbert space. --- Hilbert's program. --- Holomorphic function. --- Infinitesimal. --- Integer. --- Internal set theory. --- Interval (mathematics). --- Limit (mathematics). --- Mathematical induction. --- Mathematical optimization. --- Mathematical proof. --- Mathematician. --- Mathematics. --- Measurable function. --- Measure (mathematics). --- Minkowski space. --- Natural number. --- Neo-Riemannian theory. --- Non-standard analysis. --- Number theory. --- Operator algebra. --- Ornstein–Uhlenbeck process. --- Orthonormal basis. --- Perturbation theory (quantum mechanics). --- Philosophy of mathematics. --- Predicate (mathematical logic). --- Probability measure. --- Probability space. --- Probability theory. --- Probability. --- Projection (linear algebra). --- Pure mathematics. --- Pythagorean theorem. --- Quantum field theory. --- Quantum fluctuation. --- Quantum gravity. --- Quantum harmonic oscillator. --- Quantum mechanics. --- Quantum system. --- Quantum teleportation. --- Random variable. --- Real number. --- Renormalization group. --- Renormalization. --- Riemann mapping theorem. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Schrödinger equation. --- Scientific notation. --- Set (mathematics). --- Sign (mathematics). --- Sobolev inequality. --- Special relativity. --- Spectral theorem. --- Spin (physics). --- Statistical mechanics. --- Stochastic calculus. --- Stochastic differential equation. --- Tensor algebra. --- Theorem. --- Theoretical physics. --- Theory. --- Turing machine. --- Variable (mathematics). --- Von Neumann algebra. --- Wiener process. --- Wightman axioms. --- Zermelo–Fraenkel set theory.

Listing 1 - 5 of 5
Sort by