Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation.
Technology: general issues --- History of engineering & technology --- B-spline neural networks --- adaptive power system control --- coordinated multiple controllers --- StatCom --- exact plate theory --- thick plate --- bending vibration --- partial differential operator theory --- gauge condition --- data-driven control --- reactive power compensation --- STATCOM --- voltage control --- voltage source converter --- quadrotor UAV --- artificial neural networks --- robust control --- Taylor series --- B-splines --- particle swarm optimization --- active suspension --- model predictive control --- linear parameter varying --- ellipsoidal set --- attraction sets --- quadratic stability --- algebraic identification --- rotor-bearing system --- finite element model --- rotordynamic coefficients --- B-spline neural networks --- adaptive power system control --- coordinated multiple controllers --- StatCom --- exact plate theory --- thick plate --- bending vibration --- partial differential operator theory --- gauge condition --- data-driven control --- reactive power compensation --- STATCOM --- voltage control --- voltage source converter --- quadrotor UAV --- artificial neural networks --- robust control --- Taylor series --- B-splines --- particle swarm optimization --- active suspension --- model predictive control --- linear parameter varying --- ellipsoidal set --- attraction sets --- quadratic stability --- algebraic identification --- rotor-bearing system --- finite element model --- rotordynamic coefficients
Choose an application
This book introduces novel results on mathematical modelling, parameter identification, and automatic control for a wide range of applications of mechanical, electric, and mechatronic systems, where undesirable oscillations or vibrations are manifested. The six chapters of the book written by experts from international scientific community cover a wide range of interesting research topics related to: algebraic identification of rotordynamic parameters in rotor-bearing system using finite element models; model predictive control for active automotive suspension systems by means of hydraulic actuators; model-free data-driven-based control for a Voltage Source Converter-based Static Synchronous Compensator to improve the dynamic power grid performance under transient scenarios; an exact elasto-dynamics theory for bending vibrations for a class of flexible structures; motion profile tracking control and vibrating disturbance suppression for quadrotor aerial vehicles using artificial neural networks and particle swarm optimization; and multiple adaptive controllers based on B-Spline artificial neural networks for regulation and attenuation of low frequency oscillations for large-scale power systems. The book is addressed for both academic and industrial researchers and practitioners, as well as for postgraduate and undergraduate engineering students and other experts in a wide variety of disciplines seeking to know more about the advances and trends in mathematical modelling, control and identification of engineering systems in which undesirable oscillations or vibrations could be presented during their operation.
B-spline neural networks --- adaptive power system control --- coordinated multiple controllers --- StatCom --- exact plate theory --- thick plate --- bending vibration --- partial differential operator theory --- gauge condition --- data-driven control --- reactive power compensation --- STATCOM --- voltage control --- voltage source converter --- quadrotor UAV --- artificial neural networks --- robust control --- Taylor series --- B-splines --- particle swarm optimization --- active suspension --- model predictive control --- linear parameter varying --- ellipsoidal set --- attraction sets --- quadratic stability --- algebraic identification --- rotor-bearing system --- finite element model --- rotordynamic coefficients
Choose an application
The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems.
Technology: general issues --- VFTO suppression --- GIS --- high-frequency inductance calculation --- damping busbar --- dynamic state estimation (DSE) --- synchronous machine --- ensemble square root filter (EnSRF) --- Sage-Husa algorithm --- grounding grid --- magnetic field --- orientation --- transient electromagnetic method (TEM) --- traction power-supply system --- protective relay --- digital simulator --- monitoring and controlling system --- railway --- transformer --- transmission line --- discrete wavelet transform --- mother wavelet --- fault classification --- multiprocessor system --- online non-clairvoyant scheduling --- weighted flow time --- potential analysis --- energy efficiency --- modular multilevel converter --- STATCOM --- optimization --- harmonics --- Harris Hawk's optimization --- Atom search optimization --- laser-induced breakdown spectroscopy --- contamination --- insulators --- salt --- calibration curves --- PV water pumping --- high gain DC-DC converter --- modified LUO converter --- hybrid MPPT algorithm --- grey wolf optimizer --- cyber-physical security --- microgrid --- cyber-attacks --- VFTO suppression --- GIS --- high-frequency inductance calculation --- damping busbar --- dynamic state estimation (DSE) --- synchronous machine --- ensemble square root filter (EnSRF) --- Sage-Husa algorithm --- grounding grid --- magnetic field --- orientation --- transient electromagnetic method (TEM) --- traction power-supply system --- protective relay --- digital simulator --- monitoring and controlling system --- railway --- transformer --- transmission line --- discrete wavelet transform --- mother wavelet --- fault classification --- multiprocessor system --- online non-clairvoyant scheduling --- weighted flow time --- potential analysis --- energy efficiency --- modular multilevel converter --- STATCOM --- optimization --- harmonics --- Harris Hawk's optimization --- Atom search optimization --- laser-induced breakdown spectroscopy --- contamination --- insulators --- salt --- calibration curves --- PV water pumping --- high gain DC-DC converter --- modified LUO converter --- hybrid MPPT algorithm --- grey wolf optimizer --- cyber-physical security --- microgrid --- cyber-attacks
Choose an application
The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems.
Technology: general issues --- VFTO suppression --- GIS --- high-frequency inductance calculation --- damping busbar --- dynamic state estimation (DSE) --- synchronous machine --- ensemble square root filter (EnSRF) --- Sage–Husa algorithm --- grounding grid --- magnetic field --- orientation --- transient electromagnetic method (TEM) --- traction power-supply system --- protective relay --- digital simulator --- monitoring and controlling system --- railway --- transformer --- transmission line --- discrete wavelet transform --- mother wavelet --- fault classification --- multiprocessor system --- online non-clairvoyant scheduling --- weighted flow time --- potential analysis --- energy efficiency --- modular multilevel converter --- STATCOM --- optimization --- harmonics --- Harris Hawk’s optimization --- Atom search optimization --- laser-induced breakdown spectroscopy --- contamination --- insulators --- salt --- calibration curves --- PV water pumping --- high gain DC-DC converter --- modified LUO converter --- hybrid MPPT algorithm --- grey wolf optimizer --- cyber-physical security --- microgrid --- cyber-attacks --- n/a --- Sage-Husa algorithm --- Harris Hawk's optimization
Choose an application
This book covers the technological progress and developments of a large-scale wind energy conversion system along with its future trends, with each chapter constituting a contribution by a different leader in the wind energy arena. Recent developments in wind energy conversion systems, system optimization, stability augmentation, power smoothing, and many other fascinating topics are included in this book. Chapters are supported through modeling, control, and simulation analysis. This book contains both technical and review articles.
doubly-fed induction generator --- fault current limiters --- power system --- power smoothing --- fault characteristics --- prediction intervals --- wind forecast --- PI controller --- transmission line --- wake effect --- real fault cases --- reliability of electricity supplies --- load frequency control --- optimization --- reserve power --- battery energy storage system --- wind turbine allocation --- primary frequency control --- low voltage ride through (LVRT) --- de-loading --- fault ride-through --- fault diagnosis and isolation --- fractional order proportional-integral-differential controller --- multi-objective artificial bee colony algorithm --- Fault Ride Through (FRT) --- distance protection --- droop curve --- Distribution Static VAr Compensator(D-SVC) --- Distributed-Flexible AC Transmission system (D-FACTS) --- rotor inertia --- power wind turbine --- LPV observer --- doubly fed induction generator (DFIG) --- squirrel cage induction generator (SCIG) --- wind farm --- optimal control --- fuzzy logic controller (FLC) --- wind power forecasting --- wavelet neural network --- DFIG-based wind farm --- permanent magnet synchronous generator --- automatic generation control --- series dynamic braking resistor --- hardware-in-the-loop --- superconductor --- Distribution Static Synchronous Compensator (D-STATCOM) --- control wind turbine --- kinetic energy storage --- multiple sensor faults --- large-scale wind farm
Choose an application
The electrical demands in several countries around the world are increasing due to the huge energy requirements of prosperous economies and the human activities of modern life. In order to economically transfer electrical powers from the generation side to the demand side, these powers need to be transferred at high-voltage levels through suitable transmission systems and power substations. To this end, high-voltage transmission systems and power substations are in demand. Actually, they are at the heart of interconnected power systems, in which any faults might lead to unsuitable consequences, abnormal operation situations, security issues, and even power cuts and blackouts. In order to cope with the ever-increasing operation and control complexity and security in interconnected high-voltage power systems, new architectures, concepts, algorithms, and procedures are essential. This book aims to encourage researchers to address the technical issues and research gaps in high-voltage transmission systems and power substations in modern energy systems.
VFTO suppression --- GIS --- high-frequency inductance calculation --- damping busbar --- dynamic state estimation (DSE) --- synchronous machine --- ensemble square root filter (EnSRF) --- Sage–Husa algorithm --- grounding grid --- magnetic field --- orientation --- transient electromagnetic method (TEM) --- traction power-supply system --- protective relay --- digital simulator --- monitoring and controlling system --- railway --- transformer --- transmission line --- discrete wavelet transform --- mother wavelet --- fault classification --- multiprocessor system --- online non-clairvoyant scheduling --- weighted flow time --- potential analysis --- energy efficiency --- modular multilevel converter --- STATCOM --- optimization --- harmonics --- Harris Hawk’s optimization --- Atom search optimization --- laser-induced breakdown spectroscopy --- contamination --- insulators --- salt --- calibration curves --- PV water pumping --- high gain DC-DC converter --- modified LUO converter --- hybrid MPPT algorithm --- grey wolf optimizer --- cyber-physical security --- microgrid --- cyber-attacks --- n/a --- Sage-Husa algorithm --- Harris Hawk's optimization
Choose an application
Artificial intelligence techniques, such as expert systems, fuzzy logic, and artificial neural network techniques have become efficient tools in modeling and control applications. For example, there are several benefits in optimizing cost-effectiveness, because fuzzy logic is a methodology for the handling of inexact, imprecise, qualitative, fuzzy, and verbal information systematically and rigorously. A neuro-fuzzy controller generates or tunes the rules or membership functions of a fuzzy controller with an artificial neural network approach. There are new instantaneous power theories that may address several challenges in power quality. So, this book presents different applications of artificial intelligence techniques in advanced high-tech electronics, such as applications in power electronics, motor drives, renewable energy systems and smart grids.
droop curve --- frequency regulation --- fuzzy logic --- the rate of change of frequency --- reserve power --- smart grid --- energy Internet --- convolutional neural network --- decision optimization --- deep reinforcement learning --- electric load forecasting --- non-dominated sorting genetic algorithm II --- multi-layer perceptron --- adaptive neuro-fuzzy inference system --- meta-heuristic algorithms --- automatic generation control --- fuzzy neural network control --- thermostatically controlled loads --- back propagation algorithm --- particle swarm optimization --- load disaggregation --- artificial intelligence --- cognitive meters --- machine learning --- state machine --- NILM --- non-technical losses --- semi-supervised learning --- knowledge embed --- deep learning --- distribution network equipment --- condition assessment --- multi information source --- fuzzy iteration --- current balancing algorithm --- level-shifted SPWM --- medium-voltage applications --- multilevel current source inverter --- motor drives --- phase-shifted carrier SPWM --- STATCOM --- electricity forecasting --- CNN–LSTM --- very short-term forecasting (VSTF) --- short-term forecasting (STF) --- medium-term forecasting (MTF) --- long-term forecasting (LTF) --- asynchronous motor --- linear active disturbance rejection control --- error differentiation --- vector control --- renewable energy --- solar power plant --- Data Envelopment Analysis (DEA) --- Fuzzy Analytical Network Process (FANP) --- Fuzzy Theory
Choose an application
This book covers the technological progress and developments of a large-scale wind energy conversion system along with its future trends, with each chapter constituting a contribution by a different leader in the wind energy arena. Recent developments in wind energy conversion systems, system optimization, stability augmentation, power smoothing, and many other fascinating topics are included in this book. Chapters are supported through modeling, control, and simulation analysis. This book contains both technical and review articles.
doubly-fed induction generator --- fault current limiters --- power system --- power smoothing --- fault characteristics --- prediction intervals --- wind forecast --- PI controller --- transmission line --- wake effect --- real fault cases --- reliability of electricity supplies --- load frequency control --- optimization --- reserve power --- battery energy storage system --- wind turbine allocation --- primary frequency control --- low voltage ride through (LVRT) --- de-loading --- fault ride-through --- fault diagnosis and isolation --- fractional order proportional-integral-differential controller --- multi-objective artificial bee colony algorithm --- Fault Ride Through (FRT) --- distance protection --- droop curve --- Distribution Static VAr Compensator(D-SVC) --- Distributed-Flexible AC Transmission system (D-FACTS) --- rotor inertia --- power wind turbine --- LPV observer --- doubly fed induction generator (DFIG) --- squirrel cage induction generator (SCIG) --- wind farm --- optimal control --- fuzzy logic controller (FLC) --- wind power forecasting --- wavelet neural network --- DFIG-based wind farm --- permanent magnet synchronous generator --- automatic generation control --- series dynamic braking resistor --- hardware-in-the-loop --- superconductor --- Distribution Static Synchronous Compensator (D-STATCOM) --- control wind turbine --- kinetic energy storage --- multiple sensor faults --- large-scale wind farm
Choose an application
This book covers the technological progress and developments of a large-scale wind energy conversion system along with its future trends, with each chapter constituting a contribution by a different leader in the wind energy arena. Recent developments in wind energy conversion systems, system optimization, stability augmentation, power smoothing, and many other fascinating topics are included in this book. Chapters are supported through modeling, control, and simulation analysis. This book contains both technical and review articles.
doubly-fed induction generator --- fault current limiters --- power system --- power smoothing --- fault characteristics --- prediction intervals --- wind forecast --- PI controller --- transmission line --- wake effect --- real fault cases --- reliability of electricity supplies --- load frequency control --- optimization --- reserve power --- battery energy storage system --- wind turbine allocation --- primary frequency control --- low voltage ride through (LVRT) --- de-loading --- fault ride-through --- fault diagnosis and isolation --- fractional order proportional-integral-differential controller --- multi-objective artificial bee colony algorithm --- Fault Ride Through (FRT) --- distance protection --- droop curve --- Distribution Static VAr Compensator(D-SVC) --- Distributed-Flexible AC Transmission system (D-FACTS) --- rotor inertia --- power wind turbine --- LPV observer --- doubly fed induction generator (DFIG) --- squirrel cage induction generator (SCIG) --- wind farm --- optimal control --- fuzzy logic controller (FLC) --- wind power forecasting --- wavelet neural network --- DFIG-based wind farm --- permanent magnet synchronous generator --- automatic generation control --- series dynamic braking resistor --- hardware-in-the-loop --- superconductor --- Distribution Static Synchronous Compensator (D-STATCOM) --- control wind turbine --- kinetic energy storage --- multiple sensor faults --- large-scale wind farm --- doubly-fed induction generator --- fault current limiters --- power system --- power smoothing --- fault characteristics --- prediction intervals --- wind forecast --- PI controller --- transmission line --- wake effect --- real fault cases --- reliability of electricity supplies --- load frequency control --- optimization --- reserve power --- battery energy storage system --- wind turbine allocation --- primary frequency control --- low voltage ride through (LVRT) --- de-loading --- fault ride-through --- fault diagnosis and isolation --- fractional order proportional-integral-differential controller --- multi-objective artificial bee colony algorithm --- Fault Ride Through (FRT) --- distance protection --- droop curve --- Distribution Static VAr Compensator(D-SVC) --- Distributed-Flexible AC Transmission system (D-FACTS) --- rotor inertia --- power wind turbine --- LPV observer --- doubly fed induction generator (DFIG) --- squirrel cage induction generator (SCIG) --- wind farm --- optimal control --- fuzzy logic controller (FLC) --- wind power forecasting --- wavelet neural network --- DFIG-based wind farm --- permanent magnet synchronous generator --- automatic generation control --- series dynamic braking resistor --- hardware-in-the-loop --- superconductor --- Distribution Static Synchronous Compensator (D-STATCOM) --- control wind turbine --- kinetic energy storage --- multiple sensor faults --- large-scale wind farm
Choose an application
Artificial intelligence techniques, such as expert systems, fuzzy logic, and artificial neural network techniques have become efficient tools in modeling and control applications. For example, there are several benefits in optimizing cost-effectiveness, because fuzzy logic is a methodology for the handling of inexact, imprecise, qualitative, fuzzy, and verbal information systematically and rigorously. A neuro-fuzzy controller generates or tunes the rules or membership functions of a fuzzy controller with an artificial neural network approach. There are new instantaneous power theories that may address several challenges in power quality. So, this book presents different applications of artificial intelligence techniques in advanced high-tech electronics, such as applications in power electronics, motor drives, renewable energy systems and smart grids.
History of engineering & technology --- droop curve --- frequency regulation --- fuzzy logic --- the rate of change of frequency --- reserve power --- smart grid --- energy Internet --- convolutional neural network --- decision optimization --- deep reinforcement learning --- electric load forecasting --- non-dominated sorting genetic algorithm II --- multi-layer perceptron --- adaptive neuro-fuzzy inference system --- meta-heuristic algorithms --- automatic generation control --- fuzzy neural network control --- thermostatically controlled loads --- back propagation algorithm --- particle swarm optimization --- load disaggregation --- artificial intelligence --- cognitive meters --- machine learning --- state machine --- NILM --- non-technical losses --- semi-supervised learning --- knowledge embed --- deep learning --- distribution network equipment --- condition assessment --- multi information source --- fuzzy iteration --- current balancing algorithm --- level-shifted SPWM --- medium-voltage applications --- multilevel current source inverter --- motor drives --- phase-shifted carrier SPWM --- STATCOM --- electricity forecasting --- CNN–LSTM --- very short-term forecasting (VSTF) --- short-term forecasting (STF) --- medium-term forecasting (MTF) --- long-term forecasting (LTF) --- asynchronous motor --- linear active disturbance rejection control --- error differentiation --- vector control --- renewable energy --- solar power plant --- Data Envelopment Analysis (DEA) --- Fuzzy Analytical Network Process (FANP) --- Fuzzy Theory --- droop curve --- frequency regulation --- fuzzy logic --- the rate of change of frequency --- reserve power --- smart grid --- energy Internet --- convolutional neural network --- decision optimization --- deep reinforcement learning --- electric load forecasting --- non-dominated sorting genetic algorithm II --- multi-layer perceptron --- adaptive neuro-fuzzy inference system --- meta-heuristic algorithms --- automatic generation control --- fuzzy neural network control --- thermostatically controlled loads --- back propagation algorithm --- particle swarm optimization --- load disaggregation --- artificial intelligence --- cognitive meters --- machine learning --- state machine --- NILM --- non-technical losses --- semi-supervised learning --- knowledge embed --- deep learning --- distribution network equipment --- condition assessment --- multi information source --- fuzzy iteration --- current balancing algorithm --- level-shifted SPWM --- medium-voltage applications --- multilevel current source inverter --- motor drives --- phase-shifted carrier SPWM --- STATCOM --- electricity forecasting --- CNN–LSTM --- very short-term forecasting (VSTF) --- short-term forecasting (STF) --- medium-term forecasting (MTF) --- long-term forecasting (LTF) --- asynchronous motor --- linear active disturbance rejection control --- error differentiation --- vector control --- renewable energy --- solar power plant --- Data Envelopment Analysis (DEA) --- Fuzzy Analytical Network Process (FANP) --- Fuzzy Theory
Listing 1 - 10 of 21 | << page >> |
Sort by
|