Listing 1 - 10 of 234 | << page >> |
Sort by
|
Choose an application
This textbook provides an elementary introduction to hypergeometric functions, which generalize the usual elementary functions. It includes plenty of solved exercises and it is appropriate for a wide audience, starting from undergraduate students in mathematics, physics and engineering. Since the presented functions are limited to hypergeometric functions of a real variable, the only prerequisites are the basics of real analysis.
Choose an application
This book presents contributions of international and local experts from the African Institute for Mathematical Sciences (AIMS-Cameroon) and also from other local universities in the domain of orthogonal polynomials and applications. The topics addressed range from univariate to multivariate orthogonal polynomials, from multiple orthogonal polynomials and random matrices to orthogonal polynomials and Painlevé equations. The contributions are based on lectures given at the AIMS-Volkswagen Stiftung Workshop on Introduction of Orthogonal Polynomials and Applications held on October 5–12, 2018 in Douala, Cameroon. This workshop, funded within the framework of the Volkswagen Foundation Initiative "Symposia and Summer Schools", was aimed globally at promoting capacity building in terms of research and training in orthogonal polynomials and applications, discussions and development of new ideas as well as development and enhancement of networking including south-south cooperation.
Special functions. --- Special Functions. --- Orthogonal polynomials --- Special functions --- Mathematical analysis --- Fourier analysis --- Functions, Orthogonal --- Polynomials
Choose an application
In its second installment, Innovative Integrals and Their Applications II explores multidimensional integral identities, unveiling powerful techniques for attacking otherwise intractable integrals, thus demanding ingenuity and novel approaches. This volume focuses on novel approaches for evaluating definite integrals, with the aid of tools such as Mathematica as a means of obtaining useful results. Building upon the previous methodologies, this volume introduces additional concepts such as interchanging the order of integration, permutation symmetry, and the use of pairs of Laplace transforms and Fourier transforms, offering readers a comprehensive array of integral identities. The content further elucidates the techniques of permutation symmetry and extends the multivariate substitution approach to integrals with finite limits of integration. These insights culminate in a collection of integral identities involving gamma functions, incomplete beta functions, Bessel functions, polylogarithms, and the Meijer G-function. Additionally, readers will encounter applications of error functions, inverse error functions, hypergeometric functions, the Lambert W-function, elliptic integrals, Jacobi elliptic functions, and the Riemann zeta function, among many others, with a focus on their relevance in various scientific disciplines and cutting-edge technologies. Each chapter in this volume concludes with many interesting exercises for the reader to practice. A key tenet is that such approaches work best when applied to integrals having certain characteristics as a starting point. Most integrals, if used as a starting point, lead to no result at all, or lead to a known result. However, there is a special class of integrals (i.e., innovative integrals), which, if used as a starting point for such approaches, lead to new and useful results, and can also enable the reader to generate other new results that do not appear in the book. The intended readership includes science, technology, engineering, and mathematics (STEM) undergraduates and graduates, as well as STEM researchers and the community of engineers, scientists, and physicists; most of these potential readers have experienced the importance and/or the applications of integration from finding areas, volumes, lengths, and velocities to more advanced applications. The pedagogical approach of the exposition empowers students to comprehend and efficiently wield multidimensional integrals from their foundations, fostering a deeper understanding of advanced mathematical concepts. .
Choose an application
This volume comprises the Lecture Notes of the CIMPA Summer School "Arithmetic and Geometry around Hypergeometric Functions" held at Galatasaray University, Istanbul in 2005. It contains lecture notes, a survey article, research articles, and the results of a problem session. Key topics are moduli spaces of points on P1 and Picard-Terada-Deligne-Mostow theory, moduli spaces of K3 surfaces, complex hyperbolic geometry, ball quotients, GKZ hypergeometric structures, Hilbert and Picard modular surfaces, uniformizations of complex orbifolds, algebraicity of values of Schwartz triangle functions, and Thakur's hypergeometric function. The book provides a background, gives detailed expositions and indicates new research directions. It is directed to postgraduate students and researchers.
Mathematics. --- Algebraic geometry. --- Special functions. --- Special Functions. --- Algebraic Geometry. --- Math --- Science --- Special functions --- Mathematical analysis --- Algebraic geometry --- Geometry --- Functions, special. --- Geometry, algebraic. --- Algebra --- Geometry, Algebraic --- Number theory
Choose an application
This book discusses theoretical and applied aspects of Sturm-Liouville theory and its generalization. It introduces and classifies generalized Sturm-Liouville problems in three different spaces: continuous, discrete, and q-discrete spaces, focusing on special functions that are solutions of a regular or singular Sturm-Liouville problem. Further, it describes the conditions under which the usual Sturm-Liouville problems with symmetric solutions can be extended to a larger class, particularly highlighting the solutions of generalized problems that result in new orthogonal sequences of continuous or discrete functions. Sturm-Liouville theory is central to problems in many areas, such as engineering, mathematics, physics, and biology. This accessibly written book on the topic is a valuable resource for a broad interdisciplinary readership, from novices to experts.
Differential equations. --- Special functions. --- Ordinary Differential Equations. --- Special Functions. --- Special functions --- Mathematical analysis --- 517.91 Differential equations --- Differential equations --- Sturm-Liouville equation. --- Liouville-Sturm equation --- Boundary value problems
Choose an application
This book presents a printed testimony for the fact that George Andrews, one of the world’s leading experts in partitions and q-series for the last several decades, has passed the milestone age of 80. To honor George Andrews on this occasion, the conference “Combinatory Analysis 2018” was organized at the Pennsylvania State University from June 21 to 24, 2018. This volume comprises the original articles from the Special Issue “Combinatory Analysis 2018 – In Honor of George Andrews’ 80th Birthday” resulting from the conference and published in Annals of Combinatorics. In addition to the 37 articles of the Andrews 80 Special Issue, the book includes two new papers. These research contributions explore new grounds and present new achievements, research trends, and problems in the area. The volume is complemented by three special personal contributions: “The Worlds of George Andrews, a daughter’s take” by Amy Alznauer, “My association and collaboration with George Andrews” by Krishna Alladi, and “Ramanujan, his Lost Notebook, its importance” by Bruce Berndt. Another aspect which gives this Andrews volume a truly unique character is the “Photos” collection. In addition to pictures taken at “Combinatory Analysis 2018”, the editors selected a variety of photos, many of them not available elsewhere: “Andrews in Austria”, “Andrews in China”, “Andrews in Florida”, “Andrews in Illinois”, and “Andrews in India”. This volume will be of interest to researchers, PhD students, and interested practitioners working in the area of Combinatory Analysis, q-Series, and related fields.
Number theory. --- Special functions. --- Combinatorics. --- Number Theory. --- Special Functions. --- Combinatorics --- Algebra --- Mathematical analysis --- Special functions --- Number study --- Numbers, Theory of --- Combinatorial analysis
Choose an application
Functions, Special --- Special functions --- Mathematical analysis --- Fonctions spéciales --- Functions, Special.
Choose an application
This book is a volume of the Springer Briefs in Mathematical Physics and serves as an introductory textbook on the theory of Macdonald polynomials. It is based on a series of online lectures given by the author at the Royal Institute of Technology (KTH), Stockholm, in February and March 2021. Macdonald polynomials are a class of symmetric orthogonal polynomials in many variables. They include important classes of special functions such as Schur functions and Hall–Littlewood polynomials and play important roles in various fields of mathematics and mathematical physics. After an overview of Schur functions, the author introduces Macdonald polynomials (of type A, in the GLn version) as eigenfunctions of a q-difference operator, called the Macdonald–Ruijsenaars operator, in the ring of symmetric polynomials. Starting from this definition, various remarkable properties of Macdonald polynomials are explained, such as orthogonality, evaluation formulas, and self-duality, with emphasis on the roles of commuting q-difference operators. The author also explains how Macdonald polynomials are formulated in the framework of affine Hecke algebras and q-Dunkl operators.
Mathematical physics. --- Special functions. --- Associative rings. --- Associative algebras. --- Mathematical Physics. --- Special Functions. --- Associative Rings and Algebras. --- Polinomis
Choose an application
Undergraduate courses in mathematics are commonly of two types. On the one hand are courses in subjects—such as linear algebra or real analysis—with which it is considered that every student of mathematics should be acquainted. On the other hand are courses given by lecturers in their own areas of specialization, which are intended to serve as a preparation for research. But after taking courses of only these two types, students might not perceive the sometimes surprising interrelationships and analogies between different branches of mathematics, and students who do not go on to become professional mathematicians might never gain a clear understanding of the nature and extent of mathematics. The two-volume Number Theory: An Introduction to Mathematics attempts to provide such an understanding of the nature and extent of mathematics. It is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A, which should be accessible to a first-year undergraduate, deals with elementary number theory. Part B is more advanced than the first and should give the reader some idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches, we may obtain a broad picture. Audience This book is intended for undergraduate students in mathematics and engineering.
Number theory --- Number study --- Numbers, Theory of --- Algebra --- Number theory. --- Matrix theory. --- Functions, special. --- Number Theory. --- Linear and Multilinear Algebras, Matrix Theory. --- Special Functions. --- Special functions --- Mathematical analysis --- Algebra. --- Special functions. --- Mathematics
Choose an application
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enumeration theorem using symmetric functions. Chapters 7 and 8 are more specialized than the preceding ones, covering consecutive pattern matches in permutations, words, cycles, and alternating permutations and introducing the reciprocity method as a way to define ring homomorphisms with desirable properties. Counting with Symmetric Functions will appeal to graduate students and researchers in mathematics or related subjects who are interested in counting methods, generating functions, or symmetric functions. The unique approach taken and results and exercises explored by the authors make it an important contribution to the mathematical literature.
Algebra --- Mathematics --- Physical Sciences & Mathematics --- Symmetric functions. --- Sequences (Mathematics) --- Functions, Special. --- Combinatorial analysis. --- Combinatorics --- Special functions --- Mathematical sequences --- Numerical sequences --- Functions, Symmetric --- Mathematics. --- Sequences (Mathematics). --- Special functions. --- Combinatorics. --- Special Functions. --- Sequences, Series, Summability. --- Mathematical analysis --- Equations, Theory of --- Functions, special.
Listing 1 - 10 of 234 | << page >> |
Sort by
|