Listing 1 - 3 of 3 |
Sort by
|
Choose an application
The influence of climate on economic growth is a topic of growing interest. Few studies have investigated the potential role that climate hazards and their cumulative effects have on the growth prospects for a country. Due to the relatively stationary spatial patterns of global climate, some regions and countries are more prone to climate hazards and climate variability than others. This study uses a precipitation index that preserves the spatial and temporal variability of precipitation and differentiates between precipitation maximums (such as floods) and minimums (such as droughts). The authors develop a year and country fixed effects regression model to test the influence of climate variables on measures of economic growth and activity. The results indicate that precipitation extremes (floods and droughts) are the dominant climate influence on economic growth and that the effects are significant and negative. The drought index is associated with a highly significant negative influence on growth of growth domestic product, while the flood index is associated with a negative influence on growth of gross domestic product and lagged effects on growth. Temperature has little significant effect. These results have important implications for economic projections of climate change impacts. In addition, adaptation strategies should give new consideration to the importance of water resources given the identification of precipitation extremes as the key climate influence on historical growth of gross domestic product.
Annual precipitation --- Calculation --- Climate --- Climate change --- Climate Change Economics --- Climate Change Impacts --- Climate Change Mitigation and Green House Gases --- Climate effects --- Climate variation --- Climates --- Drought --- Drought severity --- Dust --- Environment --- Fertilizers --- Floods --- GCM --- Global Environment Facility --- Macroeconomics and Economic Growth --- Negative impacts --- Palmer drought severity index --- Precipitation --- Precipitation anomalies --- Rainfall --- Science and Technology Development --- Science of Climate Change --- Southern oscillation index --- Temperature
Choose an application
The Anthropocene, the time of humans. Never has human influence on the functioning of the planet been greater or in more urgent need of mitigation. Climate change, the accelerated warming of the planet’s surface attributed to human activities, is now at the forefront of global politics. The agriculture sector not only contributes to climate change but also feels the severity of its effects, with the water, carbon and nitrogen cycles all subject to modification as a result. Crop production systems are each subject to different types of threat and levels of threat intensity. There is however significant potential to both adapt to and mitigate climate change within the agricultural sector and reduce these threats. Each solution must be implemented in a sustainable manner and tailored to individual regions and farming systems. This Special Issue evaluates a variety of potential climate change adaptation and mitigation techniques that account for this spatial variation, including modification to cropping systems, Climate-Smart Agriculture and the development and growth of novel crops and crop varieties.
rice field --- mitigation techniques --- greenhouse gas emissions --- life cycle assessment --- farmer acceptance --- incentive measures --- income distribution --- cost distribution --- vulnerable region --- adaptation measures --- Bangladesh --- ENSO --- Southern Oscillation Index --- SOI --- El Niño --- La Niña --- soil water --- environment type --- climate adaptation --- management practices --- crop model --- APSIM --- CanESM2 --- HadCM3 --- precipitation --- temperature --- winter wheat yield --- radiative warming --- atmospheric phytoremediation --- N2O --- nitrous oxide reductase --- N2OR --- nosZ --- fertilizer --- crop breeding --- transgenic --- GHG --- extreme weather --- agriculture production --- return level --- extreme value theory --- weather --- risk --- climate change adaptation --- livelihoods --- geographic information --- agriculture --- resilience --- future crop yields --- climate change impacts --- CO2 fertilization --- corn --- rice --- soybeans --- climate-smart agriculture --- livelihood transformation --- Guatemala --- climate change --- climate change-induced impacts --- smallholder farmers --- drought-prone low lands --- rural Sidama --- southern Ethiopia --- chill accumulation --- peaches --- perennial crops --- Georgia --- South Carolina --- climate-departure --- crop–climate departure --- crop suitability --- Ecocrop --- food security --- West Africa --- crop-climate departure --- planting month --- CORDEX --- renewable energy technologies --- sustainability --- clean energy --- bioenergy --- biogas --- industrial hemp --- anaerobic digestion --- inland valley development --- hydroclimatic hazard --- water control structure --- sustainable rice production --- n/a --- El Niño --- La Niña
Choose an application
The Anthropocene, the time of humans. Never has human influence on the functioning of the planet been greater or in more urgent need of mitigation. Climate change, the accelerated warming of the planet’s surface attributed to human activities, is now at the forefront of global politics. The agriculture sector not only contributes to climate change but also feels the severity of its effects, with the water, carbon and nitrogen cycles all subject to modification as a result. Crop production systems are each subject to different types of threat and levels of threat intensity. There is however significant potential to both adapt to and mitigate climate change within the agricultural sector and reduce these threats. Each solution must be implemented in a sustainable manner and tailored to individual regions and farming systems. This Special Issue evaluates a variety of potential climate change adaptation and mitigation techniques that account for this spatial variation, including modification to cropping systems, Climate-Smart Agriculture and the development and growth of novel crops and crop varieties.
Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- rice field --- mitigation techniques --- greenhouse gas emissions --- life cycle assessment --- farmer acceptance --- incentive measures --- income distribution --- cost distribution --- vulnerable region --- adaptation measures --- Bangladesh --- ENSO --- Southern Oscillation Index --- SOI --- El Niño --- La Niña --- soil water --- environment type --- climate adaptation --- management practices --- crop model --- APSIM --- CanESM2 --- HadCM3 --- precipitation --- temperature --- winter wheat yield --- radiative warming --- atmospheric phytoremediation --- N2O --- nitrous oxide reductase --- N2OR --- nosZ --- fertilizer --- crop breeding --- transgenic --- GHG --- extreme weather --- agriculture production --- return level --- extreme value theory --- weather --- risk --- climate change adaptation --- livelihoods --- geographic information --- agriculture --- resilience --- future crop yields --- climate change impacts --- CO2 fertilization --- corn --- rice --- soybeans --- climate-smart agriculture --- livelihood transformation --- Guatemala --- climate change --- climate change-induced impacts --- smallholder farmers --- drought-prone low lands --- rural Sidama --- southern Ethiopia --- chill accumulation --- peaches --- perennial crops --- Georgia --- South Carolina --- climate-departure --- crop-climate departure --- crop suitability --- Ecocrop --- food security --- West Africa --- planting month --- CORDEX --- renewable energy technologies --- sustainability --- clean energy --- bioenergy --- biogas --- industrial hemp --- anaerobic digestion --- inland valley development --- hydroclimatic hazard --- water control structure --- sustainable rice production
Listing 1 - 3 of 3 |
Sort by
|